David Oguns
Warren Carithers

May 21, 2008

Problem/Project Description

Ray tracing is a very computationally expensive task. It involves a lot of 3D math computations that modern CPUs aren’t particularly fast in executing, and GPUs aren’t flexible enough to handle the task of completely. The Cell processor is a new CPU design that brings some of the computational power of GPUs down to a flexible enough level to accomplish ray tracing. Performances boosts are available through its SIMD hardware and parallel architecture. The purpose of my project is to exploit these benefits and accelerate the task of ray tracing.

This project is a reimplementation of all parts of the image synthesis pipeline since the ray tracer is built to model a camera from the ground up. It does not include tone reproduction.

Approach

In this project, I have implemented an algorithm to split the task of ray tracing across any number of SPEs on a Cell BE system. The program is split into two executables - the PPE executable and the SPE executable. The PPE executable takes in basic parameters such as what file to output to, render resolution, super sampling level, and how many SPEs to split the process between. The PPE thread then launches N SPE threads and polls each mailbox for pixels. As it receives them, it writes them to the proper location in the frame buffer. After it is done receiving all pixels, it writes the frame buffer out to an image file containing the complete rendering. The SPE executable takes in an address of basic task information when it starts up. From there, it copies over the actual data to read in how many pixels it will process, super sampling level, the scene, and other information necessary to continually processing rays and outputting pixels without further synchronization with the PPE. After an SPE is done processing the value of a pixel, it writes the pixel value out to its outgoing mailbox for the PPE to read. If it tries to write to the mailbox before the previous message has been read, the call blocks.
User’s Guide
Cell Ray Tracer
Program Description:

This program takes an abstract geometrically defined scene and camera and creates a computer image of how such a scene would look through the defined camera system. It does so by shooting arbitrary rays through an arbitrary view plane and through the color of the shading point hit by the ray and recursive rays generated from that point, a virtual image is created in memory and saved to the hard drive. The basic method for shading surfaces is Phong shading.
Input:

This program takes 7 arguments from the command line not including the program name itself. The first argument is the name of the output file to generate. This file is written by netpbm and uses the ppm format. This only needs to be a valid filename/path to write to. The second parameter is the name of the scene file to load from. The program does not actually do anything more than open this file for reading and closes it and as such, this parameter only needs to be a file that exists and can be opened by the program. If it cannot be, the program closes. The third and fourth arguments are the output image width and height respectively. They need to be positive integers and can be arbitrarily large. I wouldn’t recommend both dimensions very high as it will eat up more memory for the frame buffer and take longer to render. The fifth parameter is the square root of the super sampling level that will be used in the ray tracer. This increases the computational load for the task but can be increased arbitrarily high safely. The sixth parameter is the recursion depth of the ray tracer. This value should also be an unsigned integer. The scene rendered will probably not undergo recursion depths of more than 3-4, so setting it to 4 is recommended. Setting this number too high could potentially cause a stack overflow. The seventh parameter is the number of SPEs to use for the rendering task. The acceptable range for this is 1-6. This project’s implementation assumes it is running on the PS3 Cell and has a hardcoded limit of using 6 SPEs concurrently. Minimally, 1 SPE must be used to accomplish any work at all. After entering in the program name and all required arguments to the command line, the program needs no further input and will output the results to the file system when complete.
Normal Output:

This program takes an

Exception Reports:
[ebonyseraph@localhost ppu]$./ppu_main
raytrace outputFile sceneFile imgWidth imgHeight samplesPerPixel^2 ndepth umSpes

If this is the output on the command line, then the correct number of argument needs to be specified.
[ebonyseraph@localhost ppu]$./ppu_main output.ppm scene 800 600 2 4 7
Cannot exceed 6 concurrent spes. Exitting...

If this is the output on the command line, then the number of SPEs (last argument) needs to be adjusted to a value between 1-6 inclusive.
[ebonyseraph@localhost ppu]$./ppu_main output.ppm scene3 800 600 2 4 6
Running Ray Tracer...

Error opening file {scene3} for reading.

Error parsing scene file. Exiting...

If this is the output on the command line, the second argument needs to point to a valid filepath that can be opened for reading.
[ebonyseraph@localhost ppu]$./ppu_main output.ppm scene 800 600 2 4 6

Running Ray Tracer...

SPE(0) processing 80000 pixels...

SPE(1) processing 80000 pixels...

SPE(2) processing 80000 pixels...

SPE(3) processing 80000 pixels...

SPE(4) processing 80000 pixels...

SPE(5) processing 80000 pixels...

Could not open file {output.ppm} for writing.

Run time: 3.000000

If this is the output on the command line, then the first argument needs to be changed to a filepath that can be opened for writing.
Program Limitations:

The Cell Ray Tracer assumes execution in Linux on the Playstation 3 hardware. Because of this, it is limited to using 6 SPEs. Additionally, given the Playstation 3’s limited RAM, I wouldn’t suggest exceeding a render resolution of 6400x6400 which would use 156MB for the frame buffer alone. The actual hard limit depends on the system it is running on and how much free RAM and swap space there is available. There also needs to be at least width * height * 4 bytes available disk space to write out result image.

Command sequence:

1. [ebonyseraph@localhost ppu]$./ppu_main output.ppm scene 800 600 2 4 6

2. Running Ray Tracer...

3. SPE(0) processing 80000 pixels...

4. SPE(1) processing 80000 pixels...

5. SPE(3) processing 80000 pixels...

6. SPE(2) processing 80000 pixels...

7. SPE(4) processing 80000 pixels...

8. SPE(5) processing 80000 pixels...

9. Run time: 4.000000

This is an example of a successful run of the Cell Ray Tracer. The number of lines may vary depending on how many SPEs are used, and the order of the output varies as well.
Author Information:

Name:
David Oguns

Address:
141 Perkins Rd

Apt C

Rochester, NY 14623

Phone:
703-459-3121

Technical Documentation

Cell Ray Tracer

Program Description:

This program takes an abstract geometrically defined scene and camera and creates a computer image of how such a scene would look through the defined camera system. It does so by shooting arbitrary rays through an arbitrary view plane and through the color of the shading point hit by the ray and recursive rays generated from that point, a virtual image is created in memory and saved to the hard drive. The basic method for shading surfaces is Phong shading.

Historical Development of Program and Current Status:

Current Author:

Name:
David Oguns

Address:
141 Perkins Rd

Apt C

Rochester, NY 14623

Phone:
703-459-3121

Overall System Structure:

Cell Ray Tracer is composed of two executables. One is an SPE program and one PPE program. The SPE program is launched from within each thread created in the PPE program. Since this project was written in C, there are no class diagrams to show here.
Modules and Data Structures:

PPE Executable

Type:

Application entry point.

Author:

David Oguns

Calling Sequence:

Main function called once.

Completed:

May 18, 2008

Description:

The main function is a very high level break down of the ray tracing task. It loads the scene, ray traces the scene by starting multiple threads and executing the SPE program, and then writes the output.

SPE Executable

Type:

SPE Application entry point.

Author:

David Oguns

Calling Sequence:

Main function called once. Initiated by PPE Executable.

Completed:

May 18, 2008

Description:

The main function is a very high level break down of the ray tracing task on the SPE. It loads the scene, ray traces the scene, and then writes each output pixel to the outgoing mailbox.
Spe_program_info

Purpose:

This structure describes the work the SPE needs to do.

Implementation:

C struct.

Used by:

spe_executable

Initialized:

ppu_raytrace.h ;line 27

Scene

Purpose:

This structure describes the scene to be rendered.
Implementation:

C struct.

Used by:

ppe_executable, spe_executable

Initialized:

ppu_main.c; line 114
Built-in Maintenance Aids:
Cell Ray Tracer has a built in timing function. After it is done executing(assuming a successful run), it will output the runtime on the command line in seconds. It is important to note that this timer is not very accurate so times under 2 seconds are not very accurate representations of runtime.
Program Listing:

(Included in electronic submission)
