4003-440 and 4003-713 Operating Systems

Homework #3

Due January 8, 2007

Name: ___David Oguns_____________Section: _02______________________

1. Describe the actions taken by a kernel to context-switch between processes.

The current process state information is saved on the PCB(process control block) and the process scheduled to execute is restored into memory and resumed.

2. What will be the output from the program in Figure 3.24? Explain your answer.

3. The Fibonacci sequence is the series of numbers 0 1 1 2 3 5 8 Formally, it can be expressed as: f ib0 = 0, f ib1 = 1, f ibn =f ibn - 1 + f ibn – 2.

Write a C program using the fork() system call that generates the Fibonacci sequence in the child process. The number of the sequence will be provided in the command line. For example, if 5 is provided, the first five numbers in the Fibonacci sequence will be output by the child process. Because the parent and child processes have their own copies of the data, it will be necessary for the child to output the sequence. Have the parent invoke the wait() call to wait for the child process to complete before exiting the program. Perform necessary error checking to ensure that a non-negative number is passed on the command line (see Figure 3.10 in your textbook).

Name your program fib1.c and submit it with the program from question 4 below.

4. In the previous exercise, the child process must output the Fibonacci sequence, since the parent and child have their own copies of the data. Another approach to designing this program is to establish a shared-memory segment between the parent and child processes. This technique allows the child to write the contents of the Fibonacci sequence to the shared-memory segment and has the parent output the sequence when the child completes. Because the memory is shared, any changes the child makes to the shared memory will be reflected in the parent process as well. This program will be structured using POSIX shared memory as de-scribed in Section 3.5.1. The program first requires creating the data structure for the shared-memory segment. This is most easily accomplished using a struct. This data structure will contain two items: (1) a fixed-sized array of size MAX_SEQUENCE that will hold the Fibonacci values; and (2) the size of the sequence the child process is to generate sequence-size where sequence-size <= MAX_SEQUENCE. These items can be represented in a struct as follows:

#define MAX_SEQUENCE 10

typedef struct { long fib sequence[MAX_SEQUENCE]; int sequence size;

} shared_data;

The parent process will progress through the following steps:

a. Accept the parameter passed on the command line and perform error checking to ensure that the parameter is <= MAX_SEQUENCE.

b. Create a shared-memory segment of size shared data.

c. Attach the shared-memory segment to its address space.

d. Set the value of sequence size to the parameter on the command line.

e. Fork the child process and invoke the wait() system call to wait for the child to

 finish.

f. Output the value of the Fibonacci sequence in the shared-memory segment.

g. Detach and remove the shared-memory segment.

Because the child process is a copy of the parent, the shared-memory region will be attached to the child’s address space as well. The child process will then write the Fibonacci sequence to shared memory and finally will detach the segment.

One issue of concern with cooperating processes involves synchronization issues. In this exercise, the parent and child processes must be synchronized so that the parent does not output the Fibonacci sequence until the child finishes generating the sequence. These two processes will be synchronized using the wait() system call; the parent process will invoke wait(), which will cause it to be suspended until the child process exits.

Name your program fib2.c and submit it with the program from question 3 using the following command:

submit –v 440-grd homework-3-01 fib1.c fib2.c
if you are in section 01, or

submit –v 440-grd homework-3-02 fib1.c fib2.c
if you are in section 02. You must submit to the correct section number, or your submission is likely to get lost!
