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Abstract

The wealth of texts available publicly online for analysis is ever increasing. Much work in com-
putational linguistics focuses on syntactic, contextual, morphological and phonetic analysis on
written documents, vocal recordings, or texts on the internet. Twitter messages present a unique
challenge for computational linguistic analysis due to their constrained size. The constraint of 140
characters often prompts users to abbreviate words and phrases. Additionally, as an informal writ-
ing medium, messages are not expected to adhere to grammatically or orthographically standard
English. As such, Twitter messages are noisy and do not necessarily conform to standard writing
conventions of linguistic corpora, often requiring special pre-processing before advanced analysis
can be done.

In the area of computational linguistics, there is an interest in determining latent attributes
of an author. Attributes such as author gender can be determined with some amount of success
from many sources, using various methods, such as analysis of shallow linguistic patterns or topic.
Author age is more difficult to determine, but previous research has been somewhat successful at
classifying age as a binary (e.g. over or under 30), ternary, or even as a continuous variable using
various techniques.

Twitter messages present a difficult problem for latent user attribute analysis, due to the pre-
processing necessary for many computational linguistics analysis tasks. An added logistical chal-
lenge is that very few latent attributes are explicitly defined by users on Twitter. Twitter messages
are a part of an enormous data set, but the data set must be independently annotated for latent writer
attributes not defined through the Twitter API before any classification on such attributes can be
done. The actual classification problem is another particular challenge due to restrictions on tweet
length.

Previous work has shown that word and phrase abbreviation patterns used on Twitter can be
indicative of some latent user attributes, such as geographic region or the Twitter client (iPhone,
Android, Twitter website, etc.) used to make posts. This study explores if there there are age-
related patterns or change in those patterns over time evident in Twitter posts from a variety of
English language authors.

This work presents a growable data set annotated by Twitter users themselves for age and
other useful attributes. The study also presents an extension of prior work on Twitter abbreviation
patterns which shows that word and phrase abbreviation patterns can be used toward determining
user age. Notable results include classification accuracy of up to 82.6%, which was 66.8% above
relative majority class baseline (ZeroR in Weka) when classifying user ages into 10 equally sized
age bins using a support vector machine classifier and PCA extracted features.
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1 Introduction

Discovering latent data about authors of texts is a recognized topic of interest in natural language
processing. With the rising popularity of the internet, many texts and recordings that can be sub-
jects of computational linguistics analysis are available online, and online texts themselves rep-
resent ever growing corpora. Computational linguistics provides methods to process and analyze
these large language collections. Many corpora of internet language have received such attention,
such as blog posts, online news, and scientific publications [41, 42].

One of the newest corpora developing and increasingly receiving attention is a set of texts
linguists have termed microblogs. These include short, often character-limited messages, such as
those found on Facebook update messages, SMS cell phone text messages, and Twitter messages.
These present an interesting type of linguistic corpus, but often, particularly in the case of Twitter,
the texts are noisy and more challenging to work with because of nonstandard language use. In
addition, character restrictions prompt authors to develop and use word and phrase abbreviations
to convey their messages in fewer characters [18]. Cook and Stevenson identified 12 types of
abbreviations often used in SMS messages [11]. Usage of these abbreviations results in messages
with a significant percentage of tokens that are out-of-vocabulary (OOV) for the language in which
they are written. Such increased linguistic sparsity can make linguistic analysis, such as for context,
genre, and topic detection, more difficult to perform [29].

Part of the process of preparing Twitter messages for analysis involves mapping OOV word
and phrase abbreviations to in-corpus equivalents. Gouws et al. identified 9 word abbreviation
patterns used in Twitter messages which accounted for over 90% of the lexical transformations used
in a large collection of English tweets [17]. These abbreviation patterns are word-level changes
done in order to save characters in a message. The 9 identified abbreviation pattern features are
further discussed in subsection 5.4. Several of the types of abbreviation patterns are phonemic
changes, substituting a character for a phoneme or whole word. Gouws et al. used these patterns
to identify the region from which English-writing Twitter users were posting (according to time
zone data provided by Twitter) as well as the client (iPhone, Android, Twitter website, etc.) used
to post the message [17]. Based on Sarawgi et al.’s success of using deep syntactic patterns and
shallow, token-level linguistic features to identify author gender [42] and Rao et al.’s success with
identifying user age [39], it is reasonable to assume that such abbreviation patterns can help identify
user age on Twitter.

Some prior studies have looked at identifying Twitter user age with relative success, but each
had to develop a data set by hand. Because of the required and costly manual annotation and
time involved, the collected data sets were relatively small and generally used binary or ternary
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classification. Rao et al. began with a seed set of users selected from keywords in their account
description. They then had annotators choose from the seed set and users connected to them that
definitely fit in each of two bins: over or under 30 [39]. While the data were carefully selected for
accuracy, such age classification is still a challenging problem. Rao et al. only managed 9-14%
correct classification over the baseline in evenly split binary classification [39].

Age is a constantly changing real-valued attribute and is not strictly linked to communication
preferences. Those discourse patterns that are sometimes indicative of age can not always be relied
on either, as discourse style changes with social context. Increased use of informal language can
be indicative of an adolescent [37], but the same person may completely change their register when
in a conversation with an employer or other adult.

Age and other demographic data are not supplied by Twitter. Users are able to supply a lo-
cation, but it can be any value they want, and it can be changed at any time. Additionally, users
can supply a description, which may or may not hint at demographic data. Geography is best rep-
resented via the timezone a user selects to post from or view Twitter from, but more fine-grained
location and other demographic data are not available. Demographic data are used a great deal
in targeted marketing, which seeks to advertise relevant products to a user based on their demo-
graphic information. By only advertising to those demographics who would be most interested in
a product, advertisers can save on costs and increase revenues [4]. When such information is not
available, it must be determined other ways, such as through text analysis applied to social media
services, such as Twitter or Facebook.

As demographic-tagged Twitter data sets are sparse and mostly not available, I contribute and
present a novel data set developed to improve future Twitter research. In addition, I report on
analysis and processing methods, and I present updating findings regarding user age classification
using word and phrase abbreviations found in Twitter messages.

Section 2 gives a background of computational linguistics as it pertains to my topic. Section 3
covers previous work pertaining to Twitter analysis in computational linguistics. Section 4 explains
the details of my hypotheses as they relate to existing problems. Section 5 outlines the methodolo-
gies that I used in collecting and analyzing data. Section 6 presents an analysis of the collected data
set and extracted abbreviation features. Section 7 presents the details of my experimentation and
results. Finally, section 8 and section 9 present my conclusions and notes for continuing research
on this topic.
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2 Background

Computational linguistics was boosted by machine translation efforts in the 1950s, because re-
searchers believed that computers would be able to produce effective translations more quickly
than their human counterparts [21]. Today, computational linguistics has many other applications
beyond automatic translation. An understanding of language and meaning can allow a computer
to more effectively interact with its human operators and can be used for text data analytics. This
takes many forms: In advertising, products such as Google’s Adsense show topic-centered ads
based on page content [23]; In email, spam filters analyze messages for typical real usage and
spam usage then automatically flag messages that seem like spam; In intelligent human-computer
interaction, a computer can be able to communicate with and adapt to its user more effectively if it
knows different ways to present information based on its user’s age, education, emotional state, or
other attributes.

Computerized linguistic analysis has additional data available when analyzing speech than
when analyzing text. In speech, patterns in prosody, filled pauses such as umm, and so on can
indicate various details about a speaker. Additionally, speech can often be analyzed as part of a
conversation. Social factors such as social status (a boss or a child), gender, etc. can affect vocab-
ulary and many other linguistic factors in a conversation [14]. In contrast, when analyzing text,
especially online texts, those extra speech components are not available, and in many cases, con-
versational information is not either. This sparsity restricts analysis to certain linguistic patterns.

Most studies analyze data that falls into two categories: shallow or deep linguistic features.
These categories are not always consistent between linguists, however. Shallow features often in-
clude information that is based on analysis of surface text, such as through tokenization, sentence
splitting, Part-of-Speech (PoS) tagging, lemmatization, sentence phrase structures, word frequen-
cies, genre or topic, and formality [16, 35]. Deep linguistic features involve further linguistic
analysis of a text. These features are usually context independent and deal with individual words,
phrases, and sets of characters. Deep features can include phrase type, voicing, word and sen-
tence length, and word or character n-grams [9, 22]. Different studies assign features to different
categories, depending on perspective. Those above are based on the cited works.

Age is an acknowledged factor in language use, as noted by Wagner [49]. Wagner explains that
a person’s writing and speech patterns change over time as they learn and develop (‘age grading’)
[49]. An individual goes through many stages of language use through childhood, adolescence, and
adulthood. In childhood, language is acquired and understanding and conversational-interaction
skills are developed. Adolescence marks a period of change in many respects, and a person trying
to find their identity socially also explores their identity linguistically. Into adulthood, language
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use continues to change, often in response to changes in community language use (‘generational
change’). “Women have been repeatedly identified as the leaders of generational language change”
[49]. The variety of ways that language use changes over time and that language use with respect
to age varies differently depending on gender and other individual features make age classification
a challenging and attention-deserving problem.

Texts found on the internet represent a gigantic collection for analysis of linguistic changes with
respect to age. The simplicity and low cost of writing on the internet allows individuals to publish
a prolific library of formal and informal texts. Many people keep blogs, write on message boards
and newsgroups, or participate in social networking sites. The types of writing available range
from long, scientific writing, which adheres to language standards with standard grammar, syntax,
and orthography, to short, informal messages, rich in nonstandard language found on Twitter.

2.1 Twitter and the Character of Tweets

Twitter is a relatively new service, made public in 2006, which allows users to post 140 character
updates. They can follow other users, such as friends, celebrities, or companies to receive a live
digest of those users’ updates. Users can engage in public or private conversations with these short
messages, forward messages they think their followers will be interested in by retweeting, or just
post whatever they are doing, thinking, or want to write [27]. Twitter has reported having over
140 million active users and 340 million tweets per day, meaning there is an incredible amount of
information and text exchanged on Twitter [26].

The Twitter service provides two special keyword annotations of note. First is the @-username

construct, often used in a conversation between two users, noting that a tweet is a reply to some-
thing another user has said, as a method of bringing a message to the attention of another user, or,
in a retweet, noting the original author of a quoted phrase or message. An at sign precedes a series
of up to 15 alphanumeric characters and underscores which correspond with the username of a
Twitter account. The entire token, including the at sign is hyperlinked, pointing to the associated
home page of that Twitter account.

The second construct is the hashtag, denoted with a ‘#’ symbol, which provides a tagging
interface for use in tweets. The hashtag symbol is followed by a keyword or phrase (no spaces)
that is relevant to the tweet. The hyperlink created from the hashtag points to a page that lists all
other tweets with the same tag. As hashtags can occur anywhere within a tweet, they make the
process of cleaning a tweet into a standard language sentence somewhat difficult, as there is no
strict rule whether or not the hashtag is a part of a sentence or auxiliary. Hashtags that are most
used are generally short. They are frequently abbreviated or are short word phrases with the spaces

4



removed [12]. Commonly, hashtags at the end of a tweet are dropped from sentence cleaning, and
those within sentences are treated as relevant words and have the ‘#’ symbol stripped for analysis
purposes. Gimpel et al. found 35% of hashtags were treated as words rather than tags [15].

In July 2011, Twitter crossed the one million mark for developer applications registered to
use the Twitter API [24]. Twitter provides developers and researchers a robust API with which
to interact with accounts and access user information and tweets. Every user defines a username,
and optionally a real name, description, and location. Also available are the account’s associated
timezone and the account creation timestamp. Each tweet is associated with several pieces of
information in addition to the message, such as its timestamp, the Twitter client it was posted
from, if it was part of a conversation, a retweet, and the count of people who retweeted it. However,
Twitter does not elicit other data about the author that might be useful for latent attribute analysis,
such as age or other demographic information.

Several corporate entities have published various studies of the demographics on Twitter. Most
use data mining techniques to extract a set of demographic features from the defined user attributes,
relying on instances where users have published their age, gender, or location as part of their profile
or somewhere in their tweets. Others, such as the Pew Research Center, utilize other forms of data
collection. In their internet and social media use survey, they used phone interviews to get data
on internet and social media (Twitter included) use and demographics [44]. Consumers of this
information tend to be in marketing, as companies are always seeking the best way to advertise to
their target audiences.

3 Related Work

A variety of work has been published that focuses on linguistic analysis for author age, much
of which focuses on lexical and contextual clues, such as analyzing topic and genre or n-gram
patterns. N-gram patterns can refer to several elements of linguistic analysis. On a lexical level,
n-grams are groupings of length n of word tokens, found adjacently in text. They are also referred
to as unigrams, bigrams, trigrams, etc. for n of 1, 2, and 3 respectively. On a character level,
n-grams can refer to groupings of adjacent characters within a word, in much the same way as
groupings of words. Depending on the approach, special characters may be used as marks at word
boundaries. As an example, Cavnar presents trigrams for the word text, such as T, TE, TEX,
EXT, XT , and T [7]. This work, as many others, focus on token analysis. Tokens, as defined for
this work, consist of sets of characters, generally separated by spaces in the original text, but not
always. Punctuation tokens (those consisting of only punctuation characters) are separated from
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adjoining word tokens. Additionally, words recognized as contractions are separated into two word
tokens, e.g. “shouldn’t”→ “should” and “n’t”.

Garera and Yarowsky used linguistic features (amount of speech in conversation, length of
utterances, usage of passive tense, etc.) for characterizing types of speech in telephone conversa-
tions between partners in their research. They found that such sociolinguistic features improved
the accuracy of binary attribute classification for speaker age, gender, and native language [14].
Many features that are available in an audio corpus, such as prosody and vocal inflections, are
not available in a purely textual corpus, making related classification problems more challenging.
Garera and Yarowsky were able to get about 20% improvement over guessing the most common
class when classifying phone conversations for age with a binary classifier [14].

Nguyen et al. went a step beyond many other studies and classified age as a continuous variable
in online texts and transcribed telephone conversations. They found that stylistic, unigram, and part
of speech characteristics were all indicative of author age with mean absolute errors between 4.1
and 6.8 years [37].

Rosenthal and McKeown analyzed online behavior associated with blogs (i.e. usually larger
depth than tweets) and found that behavior (number of friends, posts, time of posts, etc.) could
effectively be used in binary age classifiers, in addition to linguistic analysis techniques similar to
those mentioned above [41].

Similarly, many works investigating linguistic gender and age indicators focus on non-contextual
and deeper analysis, such as through statistical language models. A statistical language model is
a probability distribution over words, sentences, phrases, or characters in a language. A language
model might hold probabilities representing n-grams. Those probabilities can be used in various
types of linguistic analysis [40].

With respect to examining another demographic feature, Sarawgi et al. explored non-contextual
syntactic patterns and morphological patterns to find if gender differences extended further than
topic analysis and word usage could indicate. They used probabilistic context-free grammars,
token-based statistical language models, and character-level language models, that learn morpho-
logical patterns on short text spans. With these, they found that gender is evident in patterns at the
character-level, even in modern scientific papers [42].

Much of linguistic analysis that has been completed focuses on formal writing or conversation
transcripts, which generally conform to standard English corpora and dialects, syntax, and orthog-
raphy. Recently, more works have begun to look at new written and online texts which do not
tend toward prescriptive standards, including SMS messages and social networking blurbs, such
as Facebook and Twitter messages. There are various challenges when trying to analyze these typ-
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ically noisy texts. Misspellings, unusual syntax, and word and phrase abbreviations are common
in these texts, which many linguistic analysis tools do not deal with.

Rao et al. found n-gram and sociolinguistic cues, such as a series of exclamation marks, el-
lipses, character repetition, use of possessives, etc., in unaltered Twitter messages could be used to
determine age (binary: over or under 30), gender, region, and political orientation, similar to works
that have focused on more formal writing. These textual sociolinguistic features yielded 20-25%
improvements over relative baselines [39]. These improvements are similar to those found in this
work. In the best cases, classifiers examined in this work using only numeric abbreviation fea-
tures performed almost 5% better. Abbreviation features combined with n-gram features showed
improvements of as much as 66.8%.

Gimpel et al. developed a part-of-speech tagger designed to handle the unique Twitter lexicon
by extending the traditionally labeled parts of speech to include new types of text such as emoticons
and special abbreviations [15]. Part-of-speech analysis can be used as a part of normalizing noisy
text, or the part-of-speech patterns can be used themselves as features for classification.

Some research takes a different approach to noisy text, such as that found on Twitter. Before
performing traditional text analysis, noisy texts are often first cleaned or normalized. There are
various ways to approach the text normalization problem, such as treating it as a spell-checking
problem, a machine translation problem, in which messages are translated from a noisy origin lan-
guage to a target language, or as an automatic speech recognition (ASR) problem [45]. ASR is
often useful for analysis of texts such as SMS, since many of the OOV words are phoneme ab-
breviations using numbers [17]. Kaufmann and Kalita presented a system for normalizing Twitter
messages into standard English. They observed that pre-processing tweets for orthographic modi-
fications and twitter-specific elements (@-usernames and # hashtags) and then applying a machine
translation approach worked well [29].

Gouws et al. built on top of the techniques of Contractor et al. [10] using the pre-processing
techniques of Kaufman and Kalita [29] to determine types of lexical transformations used to create
OOV tokens in Twitter messages. Such transformations include phonemic character substitutions
(“see” → “c”; “late” → “l8”), dropping trailing characters or vowels (“saying” → “sayin”), and
phrase abbreviations (“laughing out loud”→ “lol”). These transformations are discussed further in
subsection 5.4. Gouws et al. analyzed patterns in usage of these transformations compared to user
time zone and Twitter client to see if there was a correlation. The analysis showed that variation in
usage of these transformations were correlated with user region and Twitter client [17].

In sum, prior work suggests that text-based age prediction is tenable and leaves room for addi-
tional study. This thesis seeks to extend prior work and analyze these transformations with respect
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to user age.

4 Hypothesis

There are presently some techniques to determine latent user attributes from general texts, but few
that specifically target Twitter messages and their unique corpus characteristics. Of those works
that have focused on Twitter messages, they have two main types of shortcomings: (1) they focus
on a small set of gathered data from hand-picked users, where latent attributes are determined from
limited descriptions on user profiles or key tweeted phrases and are entered by human annotators,
as opposed to by the Twitter users providing the information themselves; or (2) they use the full
set of Twitter users and messages, but tend to be limited to the latent attributes that are provided
through the Twitter API.

Based on these observations, first, I present my solution to these issues through collection of
a new, more robust data set where the tweeters themselves label their Twitter feeds with demo-
graphic information. Second, based on the work of Gouws et al., I hypothesize that word and
phrase abbreviation patterns used to write tweets are indicative of user age, as they are indicative
of a user’s region and Twitter client [17]. Third and last, I hypothesize that usage of these abbre-
viations changes as a user ages or spends more time using the Twitter service, similar to the ways
in which language changes as a person ages and community language use evolves. I present my
experimental analysis of collected data seeking to examine these hypotheses.

5 Pre-Experimental Design and Implementation

The pre-experimental work of this thesis is comprised of four parts: (1) collection of a Twitter data
set, described in subsection 5.1; (2) pre-processing of the collected user demographic information,
described in subsection 5.2; (3) collection of user tweet data, described in subsection 5.3; and (4)
extraction of abbreviation pattern features from the collected data, described in subsection 5.4.

5.1 Data Collection

The first contribution of this thesis is collection of a user-driven Twitter data set, containing at a
minimum a user’s Twitter username, year of birth, and collected tweet IDs. The data set is popu-
lated via a user-friendly web form, shown in Figure 1, via Twitter users entering information to be
associated with the account(s) they control. It is assumed that people submitting their information
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Figure 1: The web form prepared in this study for Twitter users to submit their information
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(a) A user types ‘c’ (b) A user types ‘o’ after typing ‘c’

Figure 2: The web form suggests options as the user types, sorted alphabetically. The top option
in Figure 2a is a user-generated option that has been used more than a threshold number of times.
The other options are predefined.

are being truthful in their supplied demographic data, but it is possible that falsified information can
be submitted. When the data set is large, the majority of information collected should be truthful,
and a submission of falsified information may show as an outlier in some part of the analysis.

The web form explains basic requirements of the data collection and links to pages with more
information. Users are informed of the privacy of their data and given the opportunities to allow
their data to be redistributed to future researchers, update the information they provide, or opt
out entirely from the research. The minimum amount of information collected is Twitter user-
name and year of birth. Twitter users can also supply 8 additional attributes: (1) month of birth,
(2) gender, (3) occupational area, (4) highest education level, (5) languages used, (6) regions of
residence, (7) astrological sign, and (8) email. Most users appeared willing to include some if
not all of this additional information. In the interest of future research, non-identifying demo-
graphic information is collected in addition to the age information that will be used for this thesis.
Astrological sign is suggested as a control variable, since there has been no support of a scientific
link between astrology and personal characteristics [19].

Email is collected for part of the form processing and future automated notifications. On com-
pletion of the form, users are shown a confirmation page with links to opt out or to update their
information. If they provided an email, they are emailed the same collection of information. Lastly,
a Twitter account for this thesis (@NMoseleyThesis) follows the user. In the event that the user’s
tweets are protected (only authorized users may view their tweets), this allows them to be read for
later analysis.

The web form populates a database backend which in turn offers suggestions for the form
inputs. As shown in Figure 2, a set of predefined values for each attribute, as well as the most
frequently used user-created values, are suggested via JavaScript as a user types in the form. The
suggestions help increase initial data coherence. Additionally, each form field only allows certain
characters to be entered, according to the type of datum that is expected.
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Figure 3: The web form highlights input errors and displays an associated message, requiring the
user to correct errors before the form will submit.

Two checkboxes are included in the form which have brief sentences indicating user con-
sent. Adjoining links that point to a more in-depth explanation also show the same explanation
on mouseover, if the user has JavaScript enabled. The first checkbox is required to be selected for
submission of the form. It explains that the data collected will be used for autonomous analysis
and will not be sold or redistributed except when the user checks the second consent box. Check-
ing the second checkbox acknowledges that the user is willing to allow the data collected to be
redistributed to interested researchers in the future. It defines collected data to include all entries in
the web form, as well as collected tweet identifiers. The tweets themselves cannot be redistributed,
but the identifiers produced by Twitter can be, as per the Twitter data use policy [25].

The web form is cross-browser compatible, including on mobile platforms, and performs the
same with or without JavaScript enabled. Some added functionality, such as the above input sug-
gestions and consent information mouseover, is not available without JavaScript. All value check-
ing is still done server-side, whether or not value checking is done with JavaScript. However, when
JavaScript is enabled, users are required to enter correct values and are informed of their errors, as
shown in Figure 3.

Data were solicited from a range of sources on the internet, as well as through QR code fliers
around the city of Rochester. Pages linked to from the web form offer social networking buttons,
allowing users to suggest to their contacts that they should also participate. In future research,
soliciting participation from public figures with many followers could potentially dramatically
boost the number of Twitter users who provide access to their tweets. Statistics about the collected
data are discussed in section 6.

5.2 Demographic Data Pre-Processing

Before the collected user data could be used in analysis, each of the 10 values (section 5.1) had to
be pre-processed to ensure that data values are consistent and useful. Username, birth year, month,
gender, astrological sign, and email did not need any additional pre-processing. The web form
and database backend ensures that each of those fields has a valid value. The username must be
registered with Twitter, the birth year must be within the last 120 years, the email must be a valid
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format, and the rest must be empty or contain one of the relevant pre-specified type values.
Occupation, education, languages, and regions needed special pre-processing for graphing and

other analysis, since users are allowed to write in any value that conforms to the character level
constraints. Unique values were most frequently included in education and region where users
wrote phrases or sentences explaining their educational history or history of where they had lived.
Additionally, each of these values needed to be generalized in order to be most useful. Some Twit-
ter users included cities in their submitted regions, for example, and these were generalized to the
respective state or country region. Highest educational level completed was generalized to general
degree names (e.g. Master’s Degree, Doctoral Degree), college, and high school. For data set
redistribution, these values are left unaltered, as they were collected with future research in mind,
and any pre-processing should be done with the full data set, in the context of the research being
conducted. As most of the demographic data collected was not used in this work’s experiments,
limited analysis of the demographic data was done for this thesis to see how the collected data
compares to other published statistics. Some of the results are shown in Figure 7 and are discussed
in subsection 6.2.

5.3 Tweet Loading

As part of the web form submission and in order to download users’ tweets, the users must be
followed on Twitter. Following users as they participate via the web form and downloading their
tweets is accomplished by using three programs developed as part of this work. All use Java and
the Twitter4J library for interfacing with Twitter [50].

The first program is a library to handle authentication using the thesis Twitter account. Twitter
uses an interactive OAuth authentication system [13], which requires authenticating applications
to ask the program operator to visit a web address. Upon opening the web address, the operator is
shown a pin to enter in the application, allowing it to authenticate with Twitter using the operator’s
Twitter account. Once the application has authenticated, it is possible to store the generated keys
and avoid authenticating in the future. The library handles storage and retrieval of the keys, or
generating them if they can not be found.

The second application handles following participating Twitter users and updating database
fields to reflect follow status. It is run after a user submits the web form shown in Figure 1 and
described in subsection 5.1. First, after a new participant’s information is entered in the database,
the application queries the database for users marked as new or pending. Next, it queries Twitter
for users followed by the thesis account (this returns users as followed or pending). Using set
logic, the application determines what users need to be followed on Twitter and follows them.
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Feature Name Example Present Work Gouws et al.
Single Character (“see”→ “c”) 1.0 % 29.1%
Word End (“why”→ “y”) 1.1 % 18.8%
Drop Vowels (“should”→ “shld”) 11.2 % 16.4%
Word Begin (“schedule”→ “sched”) 8.0 % 9.0%
You to U (“your”→ “ur”) 1.7 % 8.3%
Drop Last Char (“saying”→ “sayin”) 3.2 % 7.0%
Repeat Letter (“food”→ “fooooooood”) 3.0 % 5.5%
Contraction (“birthday”→ “b’day”) 70.7 % 5.0%
Th to D (“this”→ “dis”) 1.0 % 1.0%

Table 1: Feature type names and examples with a comparison of relative percentages found in the
collected data set to the work of Gouws et al. and ordered by the frequencies found by Gouws
et al. [17]. Percentages above reflect the percentage of abbreviation features identified that belong
to each class (excluding unidentified abbreviation patterns).

With the same set logic, it also determines what users in the database need to have their followed
status updated and executes the updates. The followed status can either be unfollowed (new users),
pending (requires user approval to follow), or followed. This logic is used to reduce the number of
Twitter API queries and to ensure that the following program can be run without any other checks.

The last application is run manually to load new tweets. Using Twitter4J, as many tweets as
possible are downloaded from Twitter and stored in compressed files along with some metadata
that allows tweet downloading to be continued later. Because the Twitter API only allows the most
recent 3200 tweets, give or take a few, to be downloaded, the timestamps of the collected tweets
will only go back so far. The oldest collectable tweet corresponds inversely to the rate at which a
person tweets. For a person who only tweets about once a day, their tweets can be collected from
9 years ago (if Twitter were that old). The most prolific participant tweets about 15 times per day.
As a result, that participant’s tweets can only be collected to around 7 months prior to the date of
first collection.

5.4 Abbreviation Features and Extraction

In order to develop a model for predicting Twitter user age, the collected tweets are analyzed for
abbreviation features. The abbreviation features used are those found by Gouws et al. to be most
frequent in an overall Twitter corpus [17]. Those features are descriptively titled single character,
word end, drop vowels, word begin, you to u, drop last character, repeat letter, contraction, and th

to d. The usage frequency of abbreviation patterns found in the collected data set are compared to
those found by Gouws et al. in Table 1. Features are described with more detail in Figure 4 and
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are discussed in relation to the collected data set below.
The tweets collected using the Java framework described in subsection 5.2 were fed to a python

framework for further analysis. The text of each tweet was given to the cleanser framework de-
veloped by Gouws et al., which attempted to text-normalize each tweet into a standard English
sentence. Different stages of the text normalization utilized functions from the python Natural
Language Toolkit (NLTK) framework [33] and the SRI Language Modeling Toolkit (SRILM) [46].
The algorithm is outlined in Figure 5. (1) For each tweet, remove any series of punctuation de-
termined to be emoticons, as well as HTML bracket artifacts, should they exist. A simple regular
expression approach is taken to recognizing emoticons, as the problem is in itself quite difficult,
as outlined by Bedrick [5]. Because of this difficulty, only a small subset of all emoticons could
be correctly identified, so such features are not included in this work’s analysis. (2) Tokenize each
tweet into individual word tokens and punctuation. The NLTK tokenize.punkt library is used for
tokenizing sentences, as it is effective at separating words and punctuation, as well as separating
contraction words into multiple tokens, e.g. “shouldn’t”→ “should n’t”. (3) Generate substitution
candidates for each OOV token using a string subsequence kernel [32]. Each candidate is paired
with a probability used as an evaluation of the similarity to the original OOV token. Tokens that
are not OOV are assigned a substitution candidate the same as the original token and a probability
of 1. Probabilities are generated by the SRILM ngram program using n-gram language models
based on Gouws et al.’s LA Times corpus [17] and Han and Baldwin’s Twitter corpus [18]. (4) A
word mesh (a confusion network that can be translated into a probabilistic finite-state grammar) is
generated from the list of candidates and probabilities, which is given to the lattice-tool program
of SRILM to decode into a most likely cleaned sentence, consisting of the candidates with the
lowest expected word error. (5) The uncleaned original and tokenized texts are recorded, along
with a list of pairs consisting of an OOV token and its generated substitution. Non-OOV tokens
are retained as part of the tokenized text, but since they are not abbreviated, they are not recorded
in the substitution pairs, as the pairs are used for abbreviation feature generation.

The abbreviation features are determined on a per-tweet level, based on a per-token analysis
using the algorithm outlined in Figure 6. The input is the list of token and substitution pairs gen-
erated by the algorithm above. (1) For each tweet, each token and substitution pair are passed
to an abbreviation-finding function. (2) The function applies a series of regular expressions and
substring checks, which correspond to each of the defined abbreviation features. (3) Each token
pair is thereby assigned an abbreviation feature classification representing which abbreviation type
it matches. (4) The tweet’s set of token abbreviation feature classifications are consolidated into
a single percentage feature vector for each tweet. The values in the vector reflect the percentage
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Single Character
Replace a word with a single character. This is often a phonemic transliteration, such as
“see”→ “c” or “to”→ “2”. This is overridden by other feature classifications.

Word End
Drop all characters except a substring at the end of the identified replacement word, such
as in “why”→ “y” or “them”→ “em”.

Drop Vowels
Vowels make up approximately 38% to 40% of English words [2]. Dropping vowels
is often used to shorten words. This feature is defined as elision of one or more ortho-
graphic vowels in a word, e.g. “could”→ “cld” or “interesting”→ “intersting” (elision
of a single ‘e’).

Word Begin
Drop all characters except a substring at the beginning of the identified replacement
word, such as in “undergraduate”→ “undergrad” or “schedule”→ “sched”.

You to U
“You” is sometimes abbreviated as “u” in various pronoun-based words, such as you,
your, you’re, etc.

Drop Last Character
The last character can often be omitted without affecting the reading of a word, as in the
gerundive (-ing) case in English as in “saying”→ “sayin” or in “what”→ “wha”.

Repeat Letter
Sometimes letters are repeated rather than omitted. This can be to communicate empha-
sis or emotion, such as in “food”→ “fooooooood” or “amazing”→ “amaaaaazinggg”.

Contraction
A traditional space saving method of abbreviating two words as one. Due to the dif-
ficulty of detecting compounds that do not utilize an apostrophe, this feature only de-
scribes words that are contractions using an apostrophe, such as nonstandard “breakfast”
→ “b’fast” or standard “could not”→ “couldn’t”.

Th to D
Some words are perceived similarly when substituting the letter “d” for a “th”. This
feature could include “the” → “da”, as a special case, but this was not considered, as
it did not appear in the collected data set. Some cases that did appear in the data set
include “that”→ “dat” and “this”→ “dis”.

Figure 4: Description of the nine abbreviation features from Gouws et al.. Each word pair was
assigned one feature type classification. Some feature types overlap, such as drop last character
and word begin. In these cases, the more specific classification was assigned (drop last character).
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Data: tweet text
Result: normalized tweet text
begin generate sentence candidates

Remove emoticons and HTML artifacts
tokens← Tokenize sentence using NLTK + customization
candidates← foreach token in tokens do Generate substitution candidates and
probabilities

if OOV but valid(token) then
return token, 1.0

end
return list of substitution candidates and probabilities for token

end
lattice← generate confusion network for candidates
replacements← generate lowest word error sentence from lattice
return replacements

end

Figure 5: Text cleanser algorithm provided by Gouws et al. [17]. This work added some cus-
tomization in tokenization and small fixes, but otherwise the algorithm is the same.

of tokens in the tweet which utilize each abbreviation type. (5) The percentages are further gen-
eralized to a boolean vector, which describes if a given abbreviation feature type was used at all
in a tweet. Equivalent experiments were run using the percentage vectors and the boolean vectors
and compared. Studies have found that enough information can often be found in a single tweet to
do effective binary classification, such as on gender [6]. By comparing the results of classification
using the percentage and boolean vectors, it can be determined how much abbreviation feature in-
formation is necessary for a good classification. Additionally, combining boolean and percentage
features with word n-gram features, as well as best first feature selection or principal component
analysis feature extraction, was found to further improve classification results.

6 Data Set Analysis

A total of 72 Twitter users supplied their demographic information. Of those 72 participants, 66
had tweets. This is in part due to several users having no tweets, and some who disappeared from
Twitter after submitting the web form data. This means 8% of participating users have no tweets.
According to Beevolve Technologies, as many as 25% of users have never tweeted [48]. In the
present data set, the average number of tweets submitted by a user is 1538. Beevolve Technologies
presents separate figures for tweet frequencies based on gender, which, when combined, give an
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Data: tokenized tweet array
Result: abbreviation feature vectors (percents and booleans)
begin

length← len(tweet array)
counts← vector(0,10)
foreach token pair in tweet array do

token← token pair[0]
replacement← token pair[1]
begin get abbreviations for token pair

if token = replacement.replace(“you”, “u”) then
type← “you to u”

else if token = replacement.replace(“aeiou”, “”) or token =
replacement.replace(“aeiouy”, “”)
then

type← “drop vowels”
else if token = replacement.substr(0, len(replacement) - 1) then

type← “drop last character”
else if replacement = de repeat(token) then

type← “repeat letter”
else if token = replacement.endsWith(token) then

type← “word end”
else if token = replacement.bullettsWith(token) then

type← “word begin”
else if is contraction(token, replacement) then

type← “contraction”
else if token = replacement.replace(“th”, “d”) then

type← “th to d”
else if token in replacement and len(token) = 1 then

type← “single character”
else

type← “unknown”
end

end
increment counts for type

end
percents← counts/length
booleans← counts > 0

end

Figure 6: Abbreviation feature assignment algorithm. The classifications are assigned such that
features which are subsets of other features are assigned first. Some more specific features are
subsets of other features. For example, any drop last character feature is also a word begin feature.
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Total Participants 72
Participants With Tweets 66
Tweets 101,496
Tokens 1,655,326
Word Tokens 1,417,968
Punctuation Tokens 237,358

Table 2: Basic information about the present data set

average for tweets per person of 590, much lower than in the collected data set [48]. Basic de-
scriptive data set information is shown in Table 2. From the participants, over a hundred thousand
tweets were collected, comprising 1.65 million tokens. Of those tokens, about 1.4 million were
words and around two hundred thousand were punctuation. More detailed information about the
collected tweets from the 66 users that had tweets follows in subsection 6.1. Information about the
demographic data collected as part of the data set (all 72 users) is in subsection 6.2.

6.1 Tweet Information

The number of tweets collected for participating users varies widely, as shown in Figure 7a. As
discussed in subsection 5.2, only about the most recent 3200 tweets can be collected from a user.
The average of 1538 tweets collected per user and median of 1065 suggest that for as many users
for whom the number of tweets downloaded reached the maximum number (3200), there were
equally as many who had published under a thousand tweets. Additionally, several users only
contributed a few tweets, and a few contributed none.

On the tweet level, most tweets had a token count in the teens or low twenties, as shown
in Figure 7b. This token count includes both word tokens and punctuation tokens. A punctuation
token includes standard clausal punctuation, such as commas and periods, as well as emoticons and
other only-punctuation elements in tweets. Additionally, the token count is based on tokenization
by the NLTK punkt tokenizer, which splits contractions into two word tokens, so a space-based
token count would have been a bit lower. Word tokens are the set of unigram tokens left over
when the punctuation tokens are removed. As indicated by Figures 7b and 7c, an average tweet
might be a single sentence, with two punctuation marks and 14 word tokens. The most extreme
outlier consists of a three character interjection (“YAY”), followed by 137 exclamation points. The
tokenizer splits standard punctuation, so this greatly increased the token count by splitting each
of the 137 exclamation marks into its own token. The amount of punctuation tokens in a tweet is
generally below 5, suggesting that users avoid punctuation, except where necessary. Token counts

18



Collected Tweets Per User0
500

1000
1500
2000
2500
3000
3500

Co
un

t

(a) Average: 1538
Median: 1065

Tokens Per Tweet0
20
40
60
80

100
120
140

Co
un

t
(b) Average: 16.3

Median: 16

Word Tokens Per Tweet0
5

10
15
20
25
30
35
40

Co
un

t

(c) Average: 14
Median: 13

Punctuation Tokens Per Tweet0
5

10
15
20
25
30

Co
un

t

(d) Average: 2.24
Median: 2

Figure 7: Tweet and token distributions. Stars mark the average values. The bar in the middle
of the box marks the median value (50th percentile), and the box extends to the edge of the 25th
and 75th percentiles. Tokens is a count of the total tokens of a tweet, as defined in subsection 6.1.
Word token counts exclude tokens made up entirely of punctuation characters. The top 4 points
(137, 80, 48, and 47) are omitted from Figure 7d for readability.
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Type Min Max Mean
All Tokens 1 138 16.3
Words 1 35 14.6
Punctuation 1 137 2.6

Table 3: Per-tweet minimum, maximum, and mean counts for types of tweet tokens

All Tokens
Minimum (1) Glargleargleblaaaaarqa

Maximum (138) YAY!!![134 more !]
Mean (16) I called for a shuttle half an hour ago. Wtf. I am cold.

Word Tokens
Minimum (1) Nononono.a

Maximum (35) So if I do the pinch hit for Tari I’ll have about 5500 words due in Nov -
TWRB is 3k, pinch hit is 1k, Avenger fest is 1k or 1.5 and K/S

Mean (14) Father daughter swim: 9-yr old Claire swam 2050 yds in 1 hr, congrats!

Punctuation Tokens
Minimum (1) Today I learned my bathroom door knob is broken and if I close the door I

can’t get out and have to use the emergency call button. - -b

Maximum (137) YAY!!![134 more !]
Mean (2) I feel that I’ve been lured into a trap. There will be no cake.

Table 4: Tweet examples from the collected data set. Since actual counts are integer value, and
means are floating point, examples below include floor values of the mean.

aMade up words and emotionally illustrative utterances can be difficult to effectively pair with a cleaned represen-
tation and subsequently label with features, as there is generally no equivalent pair already encountered for use by the
normalization algorithm.

bTerminating hashtags, username @-references, and emoticons are not counted toward punctuation or word token
counts. Aphostrophes are included as part of contraction word tokens, while clause-separating punction is included in
punctuation counts.
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Feature Name Difference between Gouws et al. and present work
Single Character 28.1 %
Word End 17.7 %
Drop Vowels 5.2 %
Word Begin 1.0 %
You to U 6.6 %
Drop Last Char 3.8 %
Repeat Letter 2.5 %
Contraction −65.7 %
Th to D 0.0 %

Table 5: Feature names and the difference of relative percentages found in the collected data set and
the work of Gouws et al. [17]. Differences shown are equivalent to subtracting the present work’s
results from those of Gouws et al. in Table 1. A notable difference is for the Contraction feature
(bolded), which accounted for a larger percentage of the detected word and phrase abbreviations in
the present work than in the work of Gouws et al.. In all other cases, the percentages in the present
work were lower than those in the work of Gouws et al..

and examples of average tweets and outliers are shown in Table 3 and Table 4, respectively.
As shown in Table 5, the distribution of abbreviation pattern features in the collected data set

is very different from those reported by Gouws et al. [17]. While Gouws reported 90% coverage
with the 9 defined abbreviation types with a large Twitter data set, those types only cover 43%
of the found abbreviation patterns in this data set. There are several reasons for this that could
be contributing factors, most notably that the algorithmic definition of the abbreviation patterns
may not have been consistent between the work of Gouws et al. and this work. Additionally, the
data set primarily captures people who have completed some level of college (see subsection 6.2
and Figure 8c). These more educated persons appear at a higher rate in the collected data set than
other studies have indicated [44]. Many collected tweets are written in mostly standard English
with standard English syntax. Newer slang and various context-specific tokens, which may be
considered standard to a human reading or writing the collected tweets, would not have shown up
in the LA Times corpus or Han and Baldwin’s tweet corpus used to train the sentence normalizer
used in this study. As such, many tokens are replaced with unnecessary substitutions, and decoding
the lattice into a normalized sentence will augment tokens around any that were considered OOV.
This creates anomalous abbreviation patterns that do not fit into the defined categories at a higher
rate than a more general Twitter corpus, such as that used by Gouws et al., in which users utilize
word and phrase abbreviations more frequently.
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6.2 Demographic Information

The collected user demographic information, while from a small set of users, presents an interest-
ing picture of Twitter users that is consistent with some published figures. In the collected data
set, users self-labeled as 51.4% female and 40.3% male (see Figure 8d). If we divide those who
withheld gender information evenly between the two groups, we get about 55.6% female, 44.4%
male. This is quite consistent with various demographic studies, which suggest that Twitter has
a slightly higher female user base than male. The Pew Research Institute reported Twitter users
as 53.5% female, 46.5% male [44], while Pingdom reported a higher rate of female usage at 60%
female, 40% male [1].

The month data collected is similarly consistent with other general demographic data. It has
been established that there are more births in the months of September and August. A random
sampling of a population statistically would yield a larger number of people born in those months
than others [36]. This is reflected reasonably in the collected data, shown in Figure 8a. 15.3% of
participants self-labeled as being born in September. Additionally, as is common, fewer people
were born November through January. Those months encompass a total of 12.5% of the partici-
pants (90.3% of whom provided their month of birth). While the dates associated are not identical,
a similar effect is seen in the reported astrological signs (see Figure 8e). Virgo (mostly consists of
birth dates in the month of September) comprises 12.5% of participants, and Sagittarius, Scorpio,
and Capricorn (those closest to the months of November through January) are a total of 9.7%. Just
over 70% of people labeled their astrological sign.

Participants were also allowed to specify their highest level of education completed. After pre-
processing the variety of responses, it becomes evident that the collected data set consists mostly
of educated persons. 82% of participants reported that they had completed some or all of a college
stay. 7% reported being in high school, and 11% did not provide education information. According
to the Pew Research Institute, 6.25% of Twitter users over 18 have not completed high school and
26.9% have completed high school, but no college [44], which reflects a much higher rate of lower
education than that reported in the collected data set. The Pew Research Institute also stated that
25.9% of users were in college, while 40.2% had completed college [44]. In comparison to the
collected data set, 22% were in college and 60% had completed college. Again, the amount of
educational preparation of the users in the data set is generally higher and more homogeneous than
a general populous on Twitter. This could have various effects on the writing styles observed for
these users. As noted in subsection 6.1, this could be a contributing reason for the lower usage of
the word and phrase abbreviations that this research uses as features.

Two of the collected demographic items allowed multiple values to be submitted: languages
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Figure 8: User demographic data specified for the data set. Data can be found in Appendix A in
tabular form. 23



1950 1955 1960 1965 1970 1975 1980 1985 1990 1995
User Birth Year

0
1
2
3
4
5
6
7
8
9

Co
un

t o
f U

se
rs

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Pr
ob

ab
ili

ty

(a) Distribution of participant birth years.

Ages Participants
≤ 24 43.1%
25-34 43.1%
35-44 12.5%
45-54 0.0%
55-64 1.3%
65+ 0.0%

(b) Participant ages within discrete
ranges consistent with those used by
other Twitter demographic research.

Figure 9: Reported birth years of participants and age ranges at time of publication

most used on Twitter, and regions of residence. Users were also allowed to submit any value
to these entries, if none of the suggested values were adequate. In spite of this, user-specified
languages did not need any additional cleaning. The regions of residence submitted did require
additional cleaning, however. Several users were more specific with their region submissions,
listing their city of residence. Some other users submitted a phrase describing their residence
situation or history. In Figure 8f, these values are adjusted to country or US region. The majority
of participants were from the US (77% of total participants; 5% did not specify any region), so the
states specified within the US were separated into five geographical regions, plus United States for
those who only submitted the country name. Languages much more frequently received multiple
values, and in a greater number than regions of residence. 71.7% of languages reported were
English. 91.7% of users reported using at least English, and 6.9% did not specify any language.
Frequently, those who did not specify a language did not specify a region of residence or other
information. Only 1% did not specify English in their languages used. The user that did not
specify English was withheld from analysis, while those users that did not specify any language
were verified manually as using English.

The focal point of the data collection was participant birth years. The collected data are shown
in two forms in Figure 9. Other research that targets Twitter user age often treats age as a binary
classification, while much published demographic research uses age range bins of ten years. The
collected data show a similar distribution to these demographics with a higher usage rate in younger
people, with the usage rate tapering off for more aged persons. Almost 90% of participants were
under 35, which is a higher rate than many demographic publications on Twitter users. Pingdom
reported about 45% of Twitter users were under 35, with another 45% aged 35 to 54. The last 10%
were twice more likely to be under 65 as over [1]. By comparison, 13% and 1% of this study’s
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N-gram N Frequency
! 1 0.998
! ! 2 0.562
thank 1 0.335
thank you 2 0.258

N-gram N Frequency
, too 2 0.187
, too . 3 0.115
ur 1 0.103

Table 6: N-grams generated and their frequencies. The frequencies reflect those found in data
sets with 100 tweets per instance. N-gram elements are space separated. Very few trigrams were
selected, as their frequency was very low. Of those that were selected, most include some form of
punctuation, such as , too . shown above.

participants were in the 35 to 54 and the 55 and over categories, respectively. It is difficult to do
comparisons with much published work, however, due to the differences in sampling and reporting
methods, but it becomes relatively clear that the collected data set is thus far heavily influenced
by younger Twitter users. This is similar to the data reflected by Beevolve, which collected user
ages when they were defined in a user’s profile on Twitter textually. Beevolve found, of those
users that self-report their age on their Twitter profile (about 0.45%), almost 90% are under 35.
Of those, 73.3% are aged 15-25 [48]. This suggests that younger users are much more willing to
divulge their age, which could account for the prevalence of young participants in this data set, as
revealing age was mandatory for participation. These biases are part of what makes age prediction
such a difficult problem.

7 Experiments

The experiments were run on several hundred data sets with a number of classifiers and differ-
ent combinations of abbreviation features and n-gram features. The base feature types were (1)
boolean and (2) percentage vectors, as explained in subsection 5.4. Additionally, (3) n-gram fea-
ture vectors were created from the tokenized versions of each tweet, using Weka’s n-gram tok-
enizer. Since the tokenizing was already done as part of the pre-processing, the tokenizer simply
separated tokens by spaces, and additional parts of traditional n-gram processing, such as stop lists,
were not used. All n-gram tokens were processed in lower case, to avoid capitalization overlaps. A
Lovins stemmer [34] was applied as part of the process, since many words can appear with many
derivational and inflectional suffixes. The most frequent n-grams (up to an n of 3) were selected
automatically by Weka, resulting in about 1200 text features. In experiments using n-grams, fea-
ture selection or extraction was run to reduce the number of features, often to around 400 or less.
Each n-gram feature was considered as a numerically represented boolean in each instance, one
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Bins Age Range
2 <= 25, <= 61
4 <= 22, <= 25, <= 30, <= 61
6 <= 20, <= 22, <= 25, <= 28, <= 32, <= 61
8 <= 20, <= 22, <= 23, <= 25, <= 28, <= 30, <= 33, <= 61
10 <= 19, <= 21, <= 22, <= 23, <= 25, <= 27, <= 28, <= 30, <= 33, <= 61

Table 7: Age values covered by equal size classification bins. Bin time ranges were generated so
that the number of instances were as equal as possible between bins. Instances are assigned a class
based on the age of the user (in years) at the time of writing the tweet or tweets represented by the
instance’s feature data.

if present, zero if absent. Some selected n-grams are shown in Table 6. These three feature types
were used in experiments individually, as well as in three combinations of two types and one of all
three types.

The data were comprised of a bit over a hundred thousand instances (one per tweet), which
were combined in several ways for analysis. A group of data sets was created with one tweet per
instance, as well as with groups of 25, 50, 75, and 100 tweets. For example, in the 100 tweet
grouping, 100 tweets from the same user in chronological order were grouped and treated as one
instance and analyzed for the three types of feature vectors. Extra tweets that did not fill a full
group were ignored for those data sets, so that each instance was comprised of a full 100 tweets.
This reduced the total number of instances in the data set (around 1000 instances for 100 tweets
per group), while increasing the feature information contained in each instance. Initial experiments
were run on several tweet groupings in order to determine an optimal amount of data per instance.
Later experiments restricted the data sets to one tweet per instance, a group with 75 tweets per
instance, and three groups with 100 tweets per instance. Experiments performed to determine
optimal grouping sizes are discussed in subsubsection 7.1.2.

About 30 thousand of the tweets (30%) did not have any recorded word and phrase abbrevi-
ation features, as they were written in standard English. For this reason, each group of data sets
were duplicated and filtered to only include tweets which exhibited at least one feature type. This
division was done on a per-tweet level, so when grouped, all tweets in a group would have had at
least one feature type alone. This generally improved classifier accuracy, except in the case of the
n-gram feature type. Since the division was based on the boolean and percentage vectors, there
was generally little or no improvement in n-gram based analyses between the filtered and unfiltered
groups.

Using the age data provided by the study participants, and the timestamps of their collected
tweets, each tweet was assigned an age. For grouped instances, the assigned age was the average
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Accuracy =
TP + TN

TP + FP + TN + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

FMeasure = 2 ∗ Recall ∗ Precision

Recall + Precision
(4)

Figure 10: Metrics used in evaluation of classifiers. TP, TN, FP, and FN represent the number of
true positive, true negative, false positive, and false negative results respectively.

age of all contained tweets. Using the assigned age, each instance was assigned a classification
bin. Instances were grouped into 2, 4, 6, 8, and 10 bins to create separate data sets for initial
experiments. The high baseline accuracy for lower numbers of bins resulted in lower accuracy
improvements compared to that of data sets with higher numbers of bins, so data sets binning by 2
and 4 were later ignored. In later experiments, 10 bins were used for single-tweet-per-instance and
75-tweet-per-instance data sets. In the data sets with groups of 100 tweets per instance, data sets
were created using 6, 8, and 10 bins. Single-tweet data sets were selected for comparison, and the
larger groupings and associated binnings were selected based on the best accuracy gain results in
initial experimentation.

Initially, experiments were run on two bin types: equal-width bins, in which each bin covered
an equal time span; and equal-size bins, in which each bin covered roughly the same number
of instances. Equal-width bins were associated with low accuracy gains compared to equal-size
bins and were excluded from later experiments. Initial experiments that led to these bin types are
discussed in subsubsection 7.1.3. The age ranges covered by equal-size bins is shown in Table 7.

In later experiments, each data set was run through Weka’s best first feature selection algorithm,
as well as Weka’s Principal Component Analysis (PCA) algorithm for feature extraction. When
dealing with n-gram features alone or in any combination with abbreviation features, feature selec-
tion and extraction were necessary to keep the feature set a manageable size and ensure classifier
run time did not become unfeasible. Additionally, such filtering was found in many cases to im-
prove results over unfiltered, raw features. The data sets with filtered features were run through
experiments equivalent to those run on the raw feature data set. One of the best cases, running an
SVM on numeric features, saw an improvement of 34% when PCA was used compared to without
(bolded in Table 9).
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Each group of experiments was run on a similar set of classifiers, using the Weka Experimenter
framework, and analyzed using t-tests with a confidence of 0.05 to ensure the results selected
for note were statistically better than baseline by more than just random chance. Each of the
classifiers was evaluated using accuracy, precision, recall, and F-measure as defined in Equation 1,
Equation 2, Equation 3, and Equation 4, respectively, in Figure 10. The F-measure is defined as
the harmonic mean of precision and recall, so it provides a good comparison point that combines
precision and recall.

Each data set was run through a set of basic classifiers and a set of more advanced learning
algorithms, through Weka. Additionally, some experiments were run through an apriori association
mining algorithm in Weka. All classifier experiments began with a ZeroR classifier as an absolute
baseline. The ZeroR classifier simply assigns the most common class to all instances. Association
mining results are reported with their confidence.

The basic classifier set included several rule-based classifiers: a OneR classifier, which uses
a single feature which has the most statistical likelihood to be a good predictor to decide which
class to assign each instance, described by Holte [20]. The OneR classifier selected various fea-
tures, depending on the data set, but chose to use the contraction feature most often, perhaps due
to its frequency and variance of occurrence. This was followed with a Naive Bayesian classifier,
which uses probabilistic mappings of features to classes, assuming statistically independent fea-
tures, described by John [28]. Next, three variations of a J48 (C4.5 decision tree) classifier were
run: a standard run, which uses subtree raising in its pruning; a run with reduced error pruning,
which uses a held-out set for validation and prunes nodes based on results with those instances;
and a completely unpruned run [38]. Initial experiments also included a Decision Table classifier,
which utilizes a best-first attribute mapping, described by Kohavi [30]. After initial experiments
to determine optimal parameters, the three J48 classifiers were replaced with two, using subtree
raising for pruning and confidence factors of 0.185 and 0.2, and the Decision Table classifier was
dropped from further experiments.

The more advanced classifiers began with Support Vector Machine (SVM) classifiers, provided
by the LibSVM framework [8]. The framework provides five types of SVM classifiers, but only
two support non-binary classifications: C-SVC and nu-SVC, cost-based support vector classifica-
tion implementations [43]. In C-SVC, the cost parameter is unconstrained and positive, while in
nu-SVC, the cost parameter is in the range [0,1]. Next, experiments were run through a multilayer
perceptron neural network (MPN) classifier implemented in Weka. The advanced classifiers were
reduced to one C-SVC and one neural network classifier after initial experiments to determine
optimal parameters. Experiments to determine optimal classifier parameters are discussed in sub-
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subsection 7.1.1, and experiments to determine optimal data set parameters are discussed in other
subsections of subsection 7.1.

Initial experiments were run using an 80/20 train/test split. For each run, Weka randomly
selected 80% of the data set instances to be used train a classifier, and the remaining 20% was used
to validate the classifier and obtain accuracy metrics. For the basic classifier set, each classifier
and data set pair were run with random splits 10 times. The longer running advanced classifiers
were run three times each. The results from each run were averaged for analysis. These initial
experiments are discussed in subsection 7.1.

Each of the later experiments, described in subsection 7.2 and its subsections, was run using
Weka’s experimenter and 10-fold cross validation. In Weka’s 10-fold cross validation, Weka ran-
domly divides the input data set into 10 non-overlapping groups (folds). The classifier algorithm
is trained on 9 of the 10 folds, and tested using the one remaining fold. The training and testing is
repeated such that each of the 10 folds is used as a test set once. Each classifier-data set pair was
run through cross validation three times and the results were averaged for analysis.

One set of experiments in subsection 7.2 does not follow this paradigm: the withheld users
experiments, described in subsubsection 7.2.8. Due to the nature of the experiment and limitations
of Weka’s experimenter, a manual single-fold experiment was run. Classifiers were trained on a
data set with all instances from 5 or 6 users removed (about 10%), then tested using the users’
instances that were withheld from training.

Association mining experiments, described in subsection 7.3, were run next. The previously
used data sets were augmented to include user demographic data, as well as all abbreviation and
n-gram features. These data sets were run through Weka’s apriori association mining algorithm
with various parameters to isolate interesting rule sets.

Lastly, longitudinal analysis was run on a single-tweet-per-instance data set with numeric ab-
breviation features, as described in subsection 7.4. The features were analyzed for usage versus
time spent using Twitter to see if changes abbreviation usage could be observed.

The following sections discuss the variety of experiments run and notable results. The ex-
periments run to determine optimal binning, grouping, and classifier parameters are discussed in
subsection 7.1. Based on the results of those experiments, further experiments were run in an
attempt to improve results, discussed in subsection 7.2. The results of association mining algo-
rithms on selected data sets are described in subsection 7.3. Lastly, some observations regarding
longitudinal abbreviation pattern usage changes are discussed in subsection 7.4.
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7.1 Initial Pilot Experiments

A series of pilot experiments were run to determine optimal configurations for further experimen-
tation. In this section are descriptions of those experiments, their results, and conclusions carried
through to later experiments. First, experiments were run to determine optimal parameters for
the variety of classifiers. These experiments are discussed in subsubsection 7.1.1. In subsubsec-
tion 7.1.2, experiments to determine the optimal grouping of tweets per instance are discussed.
Lastly, experiments to determine the best number of bins for each grouping are discussed in sub-
subsection 7.1.3.

In general, all types of classifiers performed better using a filtered data set than an equivalent
full data set. This can be intuitively explained by the properties of a full data set. There are about
30 thousand more instances to train and test with in a full data set (one tweet per instance–numbers
differ for the grouped data sets), but those 30 thousand do not exhibit any abbreviation features,
which makes correctly classifying those instances much more difficult than when only training and
testing with instances that show abbreviation feature use.

The last parameter investigated in the initial experiments was the type of feature vector used:
boolean or percentage. The effect of this parameter varied depending on the classifier being used.
Basic classifiers had better accuracy and precision when using percentage vector features. Recall
varied from slightly better to much worse, which reflects in the F-Measure, which was generally
slightly better for the boolean features. SVM classifiers performed much better in all respects when
using boolean features. The multilayer perceptron network (MPN) classifiers performed better in
all metrics when using numeric features.

7.1.1 Parameter Selection Experiments

Initial experiments were only run on data sets with boolean and percentage feature vectors, as
described in subsection 5.4. In order to determine optimal parameters, each data set was run
through several instantiations of each classifier with adjustments to various classifier parameters.
The results were examined to determine which parameters resulted in the best accuracy and F-
measure, compared to each other and to the ZeroR baseline.

The OneR classifier’s minimum bucket size parameter, which defaults to 6 in Weka, had little
or no effect on its results, so it was left at 6. The naive Bayesian classifier had one parameter:
whether to use a kernel estimator or a normal distribution in its calculations. The default normal
distribution method was found to have better results. Between the three types of J48 trees, a variety
of parameters associated with error pruning were experimented with. The optimal results were split
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between two confidence factors (a parameter that determines how much pruning is incurred: lower
means more pruning) in one pruning type. The two selected J48 configurations used default subtree
raising for pruning and confidence factors of 0.2 and 0.185. The Decision Table classifier was also
experimented on, but never outperformed the other classifiers and was not considered further due
to the time it took to run.

Several series of SVM classifier runs were executed, and one configuration was selected. The
C-SVC classifier was selected with coef0 equal to 0, cost equal to 1, a degree 3 kernel with a radial
bias function, 0 gamma, 0.1 loss, and 0.5 nu. Similarly, a series of multilayer perceptron network
classifications were run with a variety of parameters. The best performing parameters selected
were no learning rate decay, one hidden layer with a number of nodes equal to the number of
attributes plus the number of bins, a learning rate of 0.3, a momentum of 0.25, and a training time
of 500 iterations.

The selected parameters were used throughout all following experimentation.

7.1.2 Grouping Experiments

The next step in initial experimentation was to determine optimal grouping for the number of
tweets per data instance. With all other parameters kept constant (generally those selected above),
the best performing classifications came from instances with 100 tweets grouped per instance.
The difference between grouping 25, 50, 75, and 100 tweets were slim, but they all performed
somewhat better than those data sets with one tweet per instance. When grouping tweets, all but
four users generated at least one instance. A majority of users produced at least four instances,
even when grouping 100 tweets per instance.

Because of these observations, additional experiments were run testing 125, 150, and 175
tweets grouped per instance. With boolean features, the larger groups offered no improvement
in classification results. Numeric features saw slightly improved results with groups of 125, but
not with 150 and 175. Additionally, experiments were run in which all of a user’s tweets were
combined into a single instance. Those experiments did not perform well. Because of this, the
larger groupings were not used.

A parameter of interest is the minimum amount of data required for an accurate result. Because
of this, and due to the results of experiments with 25, 50, 75, and 100 tweets per instance, groups of
1, 75, and 100 tweets per instance were selected for later experimentation. These were combined
with optimal binning as determined by the experiments discussed below.
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7.1.3 Binning Experiments

After running the above experiments, it became obvious that certain data sets had much better
accuracy, precision, and recall than others. The equal-sized bins (number of instances per bins)
almost always outperformed relative baselines more than the equal-width bins (time span covered
by the bins). Additionally, data sets with a larger number of bins outperformed relative baselines
with a larger margin than those with fewer bins. However, increasing the number of bins lowered
the absolute values for accuracy, precision, recall, and F-Measure.

Based on these results, data set groups with 6, 8, and 10 bins were selected for further ex-
perimentation, combined with the other data set and classifier parameters discussed above. The
specifics of these data sets and results of experiments using them are discussed in subsection 7.2.

7.2 Selected Data Set Experiments

As described in section 7, data sets were created in groups with several parameters. In each feature-
based group of data sets are five combinations of tweet-per-instance grouping and binning: 1 tweet
per group, 10 bins; 75 tweets per group, 10 bins; 100 tweets per group, 10 bins; 100 tweets per
group, 8 bins; and 100 tweets per group, 6 bins. Each of these combinations occurs in two data
sets: one with all tweets represented, and one with only tweets that exhibit at least one abbreviation
feature represented. All binning was equal-size (roughly equivalent number of instances per bin).

Several sets of experiments were run on each of seven data set groups. The seven groups were
created with different combinations of the boolean, numeric, and n-gram features (each of the three
alone, three combinations of two, and one of all three). Additionally, all groups contained raw
features, features selected with best-first feature selection, or features derived from PCA feature
extraction. Experiments on feature combinations that did not have n-gram type features included
sets with just raw features. However, the number of features created by n-gram analysis was very
large, so experiments on feature mixtures that did include n-gram type features were limited to
those reduced by best-first selection or PCA.

It is worth noting the bin selections for the experiments. It is somewhat counter-intuitive that
a larger number of bins would lead to increased accuracy in classifiers. Two bins should have
a baseline accuracy of 50%, four bins should have a baseline of 25%, and so on to a baseline
accuracy of 10% for 10 bins. This assumes a perfectly equal number of instances per bin. While
the best attempt was made at bin equality, the relatively small size of the data set made them
slightly unbalanced. For example, with 10 bins a maximal baseline accuracy was 17%.

When only examining classifier accuracy, without comparing it to the relative baseline, classi-
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fication into two bins will likely have a higher accuracy than classification into 10 bins. However,
these experiments were analyzed for improvements over baseline. Two factors contribute to the
higher performance of a larger number of bins in this analysis. First, there is less possible improve-
ment over a 50% baseline than over a 17% baseline. This matters when the largest improvement
made was 67%. Second is the issue of data outliers. In a two-bin classification, outlyers (some
extreme, such as the 1951 user) will be grouped in with the rest of the instances in a bin. A four
bin classification will overcome this problem somewhat. In this case, the best division of instances
to bins was in 10, 8, and 6 bins.

Each set of experiments is briefly described in the following sections: boolean features in sub-
subsection 7.2.1; numeric features in subsubsection 7.2.2; n-gram features in subsubsection 7.2.3;
boolean with numeric features in subsubsection 7.2.4; boolean with n-gram features in subsub-
section 7.2.5; numeric with n-gram features in subsubsection 7.2.6; and all three feature types
in subsubsection 7.2.7. Based on the results of the boolean feature experiments and the numeric
feature experiments, an additional set of experiments were run to determine efficacy of trained
classifiers when run against novel data from withheld users. These experiments are discussed in
subsubsection 7.2.8.

7.2.1 Boolean Feature Experiments

Classifiers trained on boolean features were found to have less improvement over baseline than
numeric features, or any combination of features involving n-gram features. The results of experi-
ments on these features are shown in Table 8. The best performing classifier, both in accuracy, and
in run time on boolean features was the chosen SVM run on PCA extracted features (75 tweets
per group and 10 bins). It achieved an accuracy of 9% over the ZeroR baseline. Its accuracy
was closely followed by that of the J48 classifier on unmodified boolean features of the same data
set, as well as the Naive Bayes classifier on a best-first feature set with 100 tweets per group and
10 bins. While the boolean features were shown to be somewhat useful, the results could defi-
nitely be improved on by combining them with other features. Such experiments are described in
subsubsection 7.2.5, subsubsection 7.2.4, and subsubsection 7.2.7.

7.2.2 Numeric Feature Experiments

Numeric feature experiments showed notable accuracy improvements over baseline, as shown in
Table 9. The best improvement was shown in data sets with 8 bins and 100 tweets per instance. The
J48 tree classifier performed well with best-first selected features at 25% above relative baseline,
well outperforming all other classifiers using best-first features, except the MPN. The MPN did
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Bins 6 8 10 10 10
Tweets per Instance 100 100 100 75 1

ZeroR (Raw features) 20.61 % 17.10 % 16.63 % 15.80 % 13.78 %
OneR 22.33 % 15.85 % 16.63 % 17.29 % 14.65 %
Naive Bayes 22.34 % 24.03 % 19.99 % 22.34 % 15.05 %

J48 Tree 19.60 % 22.47 % 21.98 % 23.89 % 15.08 %
SVM Classifiers 20.85 % 21.69 % 20.37 % 21.06 %
Multilayer Perceptron Network 20.76 % 22.15 % 20.29 % 21.81 %

ZeroR (Best-first) 20.61 % 17.10 % 16.63 % 15.80 % 13.78 %
OneR 22.72 % 16.16 % 17.33 % 18.51 % 14.65 %
Naive Bayes 23.89 % 20.90 % 23.58 % 19.44 % 15.05 %

J48 Tree 22.40 % 20.21 % 22.18 % 22.91 % 15.08 %
SVM Classifiers 23.89 % 18.58 % 20.07 % 18.28 %
Multilayer Perceptron Network 20.84 % 19.59 % 18.28 % 21.81 %

ZeroR (PCA) 20.61 % 17.10 % 16.63 % 15.80 % 13.78 %
OneR 21.72 % 21.23 % 19.90 % 21.35 % 15.14 %
Naive Bayes 22.65 % 23.80 % 21.31 % 22.11 % 10.36 %

J48 Tree 20.29 % 19.74 % 19.89 % 22.05 % 15.16 %
SVM Classifiers 23.19 % 23.58 % 22.55 % 25.00 %
Multilayer Perceptron Network 21.71 % 22.08 % 20.90 % 21.70 %

Table 8: Accuracy values for boolean feature experiments. All values are from experiments run on
partial data sets (those that only include instances which show at least one abbreviation feature),
for comparison. Some of the values that show the greatest improvement over relative baselines are
bolded. Results are discussed in subsubsection 7.2.1.

better still using PCA features, however, at 29% above relative baseline. While the SVM did not
perform well with raw numeric features or best-first selected features, it outperformed all other
classifiers with PCA features at 34% above relative baseline. The high accuracy of these classifiers
using numeric features suggested that age classification could be greatly aided by these features.
In combination with other features, such as n-gram analysis, very high accuracy could be achieved.
Experiments on such combinations are discussed in subsubsection 7.2.4, subsubsection 7.2.6, and
subsubsection 7.2.7.
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Bins 6 8 10 10 10
Tweets per Instance 100 100 100 75 1

ZeroR (Raw features) 20.61 % 17.10 % 16.63 % 15.80 % 13.78 %
OneR 27.53 % 23.02 % 24.10 % 24.37 % 15.34 %
Naive Bayes 32.31 % 33.80 % 31.55 % 31.31 % 12.46 %

J48 Tree 39.34 % 40.28 % 39.33 % 39.48 % 15.56 %
SVM Classifiers 20.61 % 17.10 % 16.78 % 20.47 %
Multilayer Perceptron Network 43.66 % 45.68 % 43.08 % 43.56 %

ZeroR (Best-first) 20.61 % 17.10 % 16.63 % 15.80 % 13.78 %
OneR 28.09 % 23.02 % 24.10 % 24.37 % 15.34 %
Naive Bayes 32.17 % 36.84 % 37.47 % 37.03 % 13.71 %

J48 Tree 39.12 % 41.85 % 37.54 % 35.65 % 15.23 %
SVM Classifiers 20.61 % 17.10 % 16.78 % 20.42 %
Multilayer Perceptron Network 44.87 % 43.47 % 43.56 % 43.35 %

ZeroR (PCA) 20.61 % 17.10 % 16.63 % 15.80 % 13.78 %
OneR 28.52 % 25.37 % 23.89 % 22.35 %
Naive Bayes 41.53 % 36.92 % 35.74 % 35.01 %

J48 Tree 36.47 % 34.50 % 33.57 % 33.68 %
SVM Classifiers 49.73 % 50.83 % 48.17 % 47.10 %
Multilayer Perceptron Network 45.29 % 46.44 % 43.69 % 42.65 %

Table 9: Accuracy values for numeric feature experiments. All values are from experiments run
on partial data sets, for comparison. The values that show the greatest improvement over relative
baselines are bolded. Results are discussed in subsubsection 7.2.2.

7.2.3 N-gram Feature Experiments

For comparative purposes, experiments were run using n-gram features to classify age. The data
shown in Table 10 reflects experiments on data sets equivalent to those shown in other similar
tables. While n-gram features sometimes performed better using the full tweet set (not just those
tweets that exhibit abbreviation features), some classifications performed worse with the full data
set. Additionally, unlike all boolean and numeric feature based classifications, n-gram classifica-
tions frequently performed better using equal-width bins, where each bin covered an equal time
span. Results shown are for equal-size bins for comparison purposes.

Classification using n-gram features far outperformed boolean and numeric classifiers, as was
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Bins 6 8 10 10
Tweets per Instance 100 100 100 75

ZeroR (Best-first) 20.61 % 17.10 % 16.63 % 15.80 %
OneR 28.25 % 18.81 % 20.53 % 24.31 %
Naive Bayes 83.70 % 81.10 % 79.42 % 83.21 %

J48 Tree 80.17 % 79.63 % 77.14 % 81.94 %
SVM Classifiers 81.27 % 76.58 % 70.51 % 76.74 %
Multilayer Perceptron Network 82.99 % 83.77 % 83.30 % 85.07 %

ZeroR (PCA) 20.61 % 17.10 % 16.63 % 15.80 %
OneR 31.68 % 41.82 % 38.48 % 36.64 %
Naive Bayes 73.40 % 73.69 % 74.63 % 78.88 %

J48 Tree 70.64 % 73.31 % 71.75 % 74.77 %
SVM Classifiers 63.32 % 60.34 % 56.45 % 62.79 %
Multilayer Perceptron Network 63.15 % 56.49 % 47.85 % 61.17 %

Table 10: Accuracy values for n-gram feature experiments. All values are from experiments run
on partial data sets, for comparison. The values that show the greatest improvement over relative
baselines are bolded. Results are discussed in subsubsection 7.2.3.

expected. N-grams encompass a greater breadth of information than the selected abbreviation fea-
tures, so they should be more indicative of user age. Most of the lowest performing classifications
in this experiment still outperformed the best in the boolean and numeric experiments.

Interestingly, however, PCA feature extraction did not aid results nearly as much as best-first
feature selection. This is likely due to the filtering methods and the way n-gram features are
represented in Weka. Weka treats n-gram features as a zero or one boolean value: zero if an n-
gram is not present in an instance, one if it is. The best-first selection algorithm chooses subsets of
features based on their predictive ability with respect to the data set classifications (bins), without
modifying the features. It might choose a collection of 200 n-grams out of 700 total. The PCA
algorithm derives different numeric features with high predictive ability by combining the existing
features with various fractional constants. It might derive 200 new features like .1 n-gram-1 + .25

n-gram-2 + .05 n-gram-3.
The best performing classifiers were the Naive Bayes and MPN classifiers at 67% and 69%

above baseline, respectively. Results from combining n-gram features with boolean and numeric
abbreviation features are discussed in subsubsection 7.2.5, subsubsection 7.2.6, and subsubsec-
tion 7.2.7.
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Bins 6 8 10 10 10
Tweets per Instance 100 100 100 75 1

ZeroR (Raw features) 20.61 % 17.10 % 16.63 % 15.80 %
OneR 28.09 % 23.02 % 24.10 % 24.37 %
Naive Bayes 34.80 % 34.90 % 32.71 % 33.39 %

J48 Tree 41.14 % 41.30 % 40.12 % 40.68 %
SVM Classifiers 25.13 % 20.21 % 20.53 % 21.87 %
Multilayer Perceptron Network 39.73 % 38.73 % 36.84 % 35.81 %

ZeroR (Best-first) 20.61 % 17.10 % 16.63 % 15.80 % 13.78 %
OneR 28.09 % 23.02 % 24.10 % 24.37 % 15.34 %
Naive Bayes 35.51 % 38.10 % 36.99 % 36.28 % 13.72 %

J48 Tree 43.10 % 44.04 % 38.55 % 41.74 % 15.25 %
SVM Classifiers 20.61 % 19.45 % 19.67 % 18.58 %
Multilayer Perceptron Network 47.14 % 45.67 % 46.99 % 44.38 %

ZeroR (PCA) 20.61 % 17.10 % 16.63 % 15.80 %
OneR 25.01 % 20.06 % 20.77 % 23.25 %
Naive Bayes 37.55 % 33.98 % 35.03 % 36.91 %

J48 Tree 32.47 % 31.23 % 27.64 % 28.77 %
SVM Classifiers 49.50 % 49.03 % 47.94 % 46.69 %
Multilayer Perceptron Network 44.80 % 42.49 % 44.41 % 41.53 %

Table 11: Accuracy values for boolean and numeric feature experiments. All values are from ex-
periments run on partial data sets, for comparison. The values that show the greatest improvement
over relative baselines are bolded. Results are discussed in subsubsection 7.2.4.

7.2.4 Boolean and Numeric Feature Experiments

By simply using a combination of boolean and numeric features, classifiers were found to outper-
form equivalent experiments using just one of the feature types. Results of these experiments are
shown in Table 11. In many cases, the improvements are slight, and in the case of SVM classifiers
run on PCA extracted features, there was a slight decrease in accuracy. A J48 tree classifier run
on unmodified features (75 tweets per instance, 10 bins) far outperformed its equivalent in either
boolean or numeric feature experiments at 25% above baseline. Better performing still was the
J48 classifier run on best-first selected features with 100 tweets per instance and 8 bins at 27%
above baseline. Within the same feature type, the MPN classifier performed consistently well,
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Bins 6 8 10 10
Tweets per Instance 100 100 100 75

ZeroR (Best-first) 20.61 % 17.10 % 16.63 % 15.80 %
OneR 28.25 % 19.13 % 20.53 % 24.31 %
Naive Bayes 76.73 % 75.95 % 74.20 % 76.55 %

J48 Tree 69.70 % 77.23 % 74.31 % 75.69 %
SVM Classifiers 74.70 % 73.16 % 65.21 % 71.94 %
Multilayer Perceptron Network 76.75 % 78.23 % 75.73 % 78.48 %

ZeroR (PCA) 20.61 % 17.10 % 16.63 % 15.80 %
OneR 38.25 % 39.73 % 29.43 % 34.95 %
Naive Bayes 63.69 % 71.90 % 73.54 % 77.15 %

J48 Tree 59.63 % 62.83 % 64.59 % 68.88 %
SVM Classifiers 75.79 % 76.27 % 73.38 % 82.59 %
Multilayer Perceptron Network 76.75 % 78.23 % 75.73 % 78.48 %

Table 12: Accuracy values for boolean and n-gram feature experiments. All values are from ex-
periments run on partial data sets, for comparison. The values that show the greatest improvement
over relative baselines are bolded. Results are discussed in subsubsection 7.2.5.

reaching 29% and 29% above baseline. As in other experiments, the SVM performed much better
with PCA extracted features. In the 100 tweet per instance, 8 bin data set, it achieved 32% above
relative baseline.

As had been suspected, combining features tended to improve results. Further results of com-
bining features are discussed in subsubsections below.

7.2.5 Boolean and N-gram Feature Experiments

An interesting effect was observed when combining boolean and n-gram features. It was hoped
that by combining abbreviation features with n-gram features, a higher overall accuracy could be
achieved. However, in combining these features, accuracy for best-first selected features was low-
ered somewhat. The highest accuracy for best-first selected features was from an MPN classifier
at 63% above baseline. In contrast, accuracy for PCA extracted features was greatly improved for
SVM and MPN classifiers. The SVM classifier achieved 67% over baseline. These results are
shown in Table 12.

These results suggested that combining numeric features with n-gram features or all three types
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Bins 6 8 10 10
Tweets per Instance 100 100 100 75

ZeroR (Best-first) 20.61 % 17.10 % 16.63 % 15.80 %
OneR 28.09 % 23.33 % 24.10 % 24.37 %
Naive Bayes 75.40 % 76.03 % 76.20 % 75.81 %

J48 Tree 72.60 % 75.50 % 75.12 % 76.37 %
SVM Classifiers 74.56 % 72.37 % 64.19 % 69.57 %
Multilayer Perceptron Network 82.98 % 79.94 % 78.70 % 79.17 %

ZeroR (PCA) 20.61 % 17.10 % 16.63 % 15.80 %
OneR 37.06 % 40.82 % 28.42 % 34.15 %
Naive Bayes 60.51 % 71.20 % 75.11 % 77.26 %

J48 Tree 61.67 % 64.00 % 68.40 % 71.69 %
SVM Classifiers 76.33 % 76.43 % 73.54 % 82.82 %
Multilayer Perceptron Network 63.77 % 57.93 % 60.98 % 66.04 %

Table 13: Accuracy values for numeric and n-gram feature experiments. All values are from ex-
periments run on partial data sets, for comparison. The values that show the greatest improvement
over relative baselines are bolded. Results are discussed in subsubsection 7.2.6.

of features would lead to even better results. Experiments on those combinations are discussed
below in subsubsection 7.2.6 and subsubsection 7.2.7.

7.2.6 Numeric and N-gram Feature Experiments

Experiments on numeric and n-gram features yielded results very similar to those on boolean and
n-gram features, as shown in Table 13. The accuracy of best-first selected features was lowered in
comparison to just n-gram features, while the accuracy of PCA extracted features was improved.
Again, the SVM classifier performed best with PCA features, and the MPN classifier performed
best in the best-first feature experiments.

While very similar, the results of the well performing classifiers in these experiments were
slightly better than those from the boolean and n-gram experiments. However, those classifiers
that were not shown to do as well (SVM in best-first experiments, MPN in PCA experiments)
performed much less well with numeric and n-gram features. A similar effect was also observed
with the experiments described in the following section.
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Bins 6 8 10 10
Tweets per Instance 100 100 100 75

ZeroR (Best-first) 20.61 % 17.10 % 16.63 % 15.80 %
OneR 28.09 % 23.33 % 24.10 % 24.37 %
Naive Bayes 75.40 % 76.19 % 76.51 % 75.81 %

J48 Tree 72.60 % 75.26 % 75.12 % 76.37 %
SVM Classifiers 74.56 % 72.22 % 63.80 % 69.57 %
Multilayer Perceptron Network 82.98 % 80.40 % 80.26 % 79.17 %

ZeroR (PCA) 20.61 % 17.10 % 16.63 % 15.80 %
OneR 38.25 % 42.13 % 29.67 % 37.04 %
Naive Bayes 61.74 % 70.96 % 71.43 % 76.11 %

J48 Tree 58.41 % 64.54 % 69.10 % 72.15 %
SVM Classifiers 75.79 % 75.34 % 73.07 % 82.53 %
Multilayer Perceptron Network 63.31 % 57.51 % 63.08 % 67.02 %

Table 14: Accuracy values for boolean, numeric, and n-gram feature experiments. All values
are from experiments run on partial data sets, for comparison. The values that show the greatest
improvement over relative baselines are bolded. Results are discussed in subsubsection 7.2.7.

7.2.7 Boolean, Numeric, and N-gram Feature Experiments

Experiments combining all three feature types showed slight improvements over those experiments
that combined n-gram features and boolean or numeric features. Results are displayed in Table 14.
The Naive Bayes classifier performed quite well with best-first selected features, ten bins, and 100
tweets per instance at 60% above relative baseline. It was surpassed in the same category by the
MPN classifier, which achieved 64% above baseline. These classifiers did not perform as well
with PCA extracted features. The SVM classifier performed better with PCA extracted features,
however, and achieved the best improvement over baseline at 67% with ten bins and 75 tweets per
instance.

The results of this experiment are promising, however they indicate a ceiling on accuracy rates
using the given features. Furthermore, combining all three feature types is not necessary, as nearly
identical results can be achieved using n-gram features and one type of boolean or numeric features.
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Training Withheld Testing
Classifier Accuracy Prec. Recall F-Meas. Accuracy Prec. Recall F-Meas.
ZeroR 17.76 % 0.03 0.18 0.05 0.00 % 0.00 0.00 0.00
0R 1951 WH 17.94 % 0.03 0.18 0.06 0.00 % 0.00 0.00 0.00

J48 79.08 % 0.80 0.79 0.78 12.50 % 0.08 0.13 0.10
J48 1951 WH 79.85 % 0.81 0.80 0.79 10.00 % 0.07 0.10 0.08

SVM 59.61 % 0.64 0.60 0.58 31.25 % 0.31 0.31 0.31
SVM 1951 WH 59.95 % 0.65 0.60 0.58 25.00 % 0.25 0.25 0.25

MPN 61.56 % 0.64 0.62 0.61 18.75 % 0.28 0.19 0.20
MPN 1951 WH 60.93 % 0.65 0.61 0.61 15.00 % 0.27 0.15 0.16

Table 15: Results of withheld user testing, 100 tweets per instance. “1951 WH” denotes classifiers
run with the 1951 user excluded from the training set, and included in the withheld testing set.
As could be expected, withheld testing performed better when the 1951 outlyer was included in
training.

7.2.8 Withheld Users Experiments

Based on the results of experiments on boolean and numeric features, described in subsection 7.2,
three pairings of classifiers and data sets were selected for experiments involving novel data testing.
The selected data sets all featured 100 tweets grouped per instance and numeric-based features and
were filtered to only include tweets exhibiting one or more features. A J48 tree classifier using
a 0.2 confidence factor was selected to be run on data sets with 8 class bins and features filtered
using a best-first feature selection algorithm. An SVM classifier using parameters as described in
subsubsection 7.1.1 was run on data sets with 10 bins, with features derived from PCA. The third
classifier was an MPN, again as described in subsubsection 7.1.1, which was run on data sets with
8 bins and PCA-derived features.

For each classifier-data set pairing, 4 data sets were developed for training and testing. The
testing sets had all data from 6 and 7 participants withheld (about 10% of the participants), while
the training sets had the remaining data. This was similar to the 10-fold cross validation exper-
iments described above, except that only one fold was used for testing. Additionally, instead of
being randomly selected, the fold containing data from withheld participants was selected man-
ually based on the users’ reported age in order to get an even age distribution. The participants
selected to be withheld reported birth years were 1995, 1990, 1985, 1980, 1976, 1970, and 1951.
In order to investigate how the outlier born in 1951 affected results, half the data sets had the 1951
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Training Withheld Testing
Classifier Accuracy Prec. Recall F-Meas. Accuracy Prec. Recall F-Meas.
ZeroR 17.36 % 0.03 0.17 0.05 0.00 % 0.00 0.00 0.00
0R 1951 WH 17.52 % 0.03 0.18 0.05 0.00 % 0.00 0.00 0.00

J48 82.64 % 0.80 0.79 0.78 13.04 % 0.08 0.13 0.10
J48 1951 WH 83.21 % 0.84 0.83 0.83 10.71 % 0.13 0.11 0.10

SVM 62.57 % 0.66 0.63 0.61 13.04 % 0.10 0.13 0.11
SVM 1951 WH 62.96 % 0.67 0.63 0.61 14.29 % 0.10 0.14 0.11

MPN 64.20 % 0.68 0.64 0.64 17.39 % 0.10 0.17 0.13
MPN 1951 WH 65.51 % 0.68 0.66 0.66 14.29 % 0.13 0.14 0.12

Table 16: Results of withheld user testing, 75 tweets per instance. “1951 WH” denotes classifiers
run with the 1951 user excluded from the training set, and included in the withheld testing set.
Compared to Table 15, classifiers perform better at classifying training data when trained with
with an increased number of data instances, but fall short in withheld testing.

participant’s data withheld to the testing set, and half had it included in the training set. The four
data sets each had 427 instances, 16 of which were withheld when 6 users are withheld for testing
after training. 20 were withheld when the 1951 user was withheld.

The results of the four classifier runs are shown in Table 15. The J48 classifier performed very
well in training, but did not handle novel data well. In contrast, the SVM classifier performed a bit
less well, but performed significantly better with novel data. The MPN classifier performed only
slightly better than the SVM classifier in training, but much worse in testing. The effect of training
with the 1951 user’s data versus without was noticeable only in the testing phase. It had little effect
on the results of training, but consistently decreased testing accuracy when it was included in the
testing set.

Based on the results above, equivalent data sets were created using 75 tweets per instance
instead of 100. This increased the total number of instances in each data set to 576 (23 and 28
withheld, compared to 16 and 20 above). The results of these experiments are shown in Table 16.
By increasing the number of training and testing instances, it was hoped that novel data testing
would show improved results. All the training results were better, however, only the J48 tree
classifier showed improvement in withheld testing. This would indicate that larger amounts of
training data will improve classification results, but hinder the classifier when working with novel
data.
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Rule Confidence
* Turkey=false→ Turkish=false 100%
* Poland=false→ Polish=false 100%
* Germany=false→ German=false 100%
* Japanese=false→ Japan=false 100%

Mandarin=false→ Japan=false 100%
Japan=false→Mandarin=false 98%

* You to U=False→ Word End=False 99%
* You to U=False→ Single Character=False 99%

Drop Last Character=False→ Word End=False 99%
Word End=False→ Drop Last Character=False 98%
Drop Last Character=False→ Single Character=False 99%
Single Character=False→ Drop Last Character=False 98%
Drop Last Character=False→ You to U=False 99%
You to U=False→ Drop Last Character=False 98%
* Drop Last Character=False→ Repeat Letter=False 98%

Table 17: Some association rules found in analysis. Rules that were found with the same confi-
dence in both directions are denoted with an asterisk (*). In most cases, rules with 100% confidence
dealt with language and region outlyers. Languages other than English were uncommon, as were
non-English speaking countries. The high confidence rules dealing with abbreviation patterns were
based on low-occurrence patterns. The Contraction abbreviation pattern, for example, does not ap-
pear until much lower confidence levels. This also leads to many similar associations, such as not
having lived in a country implies not using an uncommon abbreviation type.

7.3 Association Mining

Following the above described experiments, a series of experiments were conducted using an apri-
ori association mining algorithm in Weka [31, 3]. The primary goal of these experiments was to
investigate if any useful rules could be generated that associate user age classifications, abbrevia-
tion features, and collected demographic data.

Generated rules were evaluated based on their confidence values. A rule’s confidence is defined
as a percentage. Out of a set of instances from the overall data set where the conditional portion
(the left side) of the rule is observed, the confidence is the percentage of those instances where the
consequent portion (the right side) of the rule is true [31].

The first step for this experiment series was data preparation. In all previous experiments,
demographic data (except for age classifications) were withheld from classifiers. Since part of
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Rule Conf.
Occupation=Student→ Age Class<=19.0 36%
Occupation=Student Drop Vowel=False→ Age Class<=19.0 37%
Occupation=Student Drop Vowel=False Contraction=False→ Age Class<=19.0 40%
Occupation=Student Gender=M→ Age Class<=19.0 46%

Gender=F Education=Bachelor’s Degree→ Age Class<=25.0 28%
Gender=F Education=Bachelor’s Degree Drop Vowel=False→ Age Class<=25.0 28%

Education=Some College→ Age Class<=21 25%
Education=Some College Drop Last Character=False→ Age Class<=21 25%

Gender=M→ Age Class<=21 25%
Gender=M You to U=False Drop Vowel=False→ Age Class<=21 24%

Gender=F→ Age Class<=33.0 18%
Gender=F Word End=False Th to D=False→ Age Class<=33.0 18%

Gender=Male United States=true→ Age Class<=21.36 69%

Table 18: Class association rules (CARs) found in analysis. Above, female users were age 30–33
18% of the time. Adding abbreviation features to this rule did not change the confidence level, as
for many other associations. However, when examining the occupation feature, adding additional
feature information to the rule raised its confidence up to 10%. In some cases, the additional in-
formation even lowered the rule’s confidence, such as with males in the age class <= 21. Features
with higher variance (which would be evident with numeric features), such as the Contraction ab-
breviation feature did not appear above 42% confidence when making CARs. One of the highest
confidence CARs is shown with a confidence of 69% when excluding language data and including
region data.

the focus of these experiments was to investigate the relationship between collected demographic
data and abbreviation features, the demographic data had to be preprocessed and associated with
proper instances with abbreviation features and age classifications. A small part of this preparation
involved normalizing values for features such as education, as described in subsection 5.2. The
rest of this preparation involved splitting multi-valued features, such as region and language, into
several boolean features, eg. Australia: true if a user reported having lived in Australia; or Turkish:
true if a user reported writing in Turkish at any time.

Using the same data set paradigm as described in section 7 and subsection 7.2, data sets with
boolean features and 10 bins were examined. Rules were generated from sets with groupings of 1,
75, and 100 tweets per instance. These data set selections gave a group of results to compare to
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above experimental results. For the most part, the best rules were found from the 100 tweets-per-
instance data set. The algorithm used was only able to operate on nominal features, so numeric
abbreviation features and n-gram features could not be used. Grouped instances likely showed bet-
ter results due to the boolean feature type containing less information than an equivalent numeric
type, as well has having a smaller total number of instances. For comparison, results highlighted
in Table 8 may be useful.

Initial runs of the association algorithm were not restricted to creating class association rules
(CARs) [31]. Such general association rules map combinations of features to other combinations
of features, as opposed to CARs, which map combinations of features to classes. These general
association runs generated many associations that might be considered obvious, and were found
with a confidence of 100% or very close to it. Several such rules are shown in Table 17. For
example, those instances where a user did not report speaking Turkish, the user also did not report
living in Turkey. Such rules were based on the collection of instances belonging to one or a few
users, as such internal consistency was high. They may not be considered useful rules, however,
as the language and region values reported were not associated directly with tweets, only with the
user. Most tweets were not examined for spoken language, as it was assumed to be English, except
in one case where a user tweeted solely in Lojban, a logically engineered artificial language.

More interesting rules were generated when the algorithm was set to only create CARs and
when the available features were reduced to exclude language and region features. In many cases, a
mixture of features did not alter rule confidence. Sometimes, such as shown in Table 18, additional
features in the conditional part of the rule lowered confidence values. In a few cases, however,
combining additional features with a basic rule raised confidence a great deal. Based on features
showing educational level (Occupation=Student, Education), females reported higher education
levels. Within the data set, a larger number of females reported in the age ranges of 23–28, while
males reported in larger numbers as under 21. This could account for the higher educational levels
reported by females. Similarly, those who reported their occupation as Student were most often
classified as under age 19.

CARs ignoring demographic data showed confidence peaking at 14%. Most of these rules did
not outperform statistical baselines. For example, a number of rules combined various abbreviation
features and the age classification <=21 with confidence of 14%. However, that age classification
also appears in the data set at a rate of 14%. In these rules, additional features in the conditional
portion of the rule often lowered its confidence below baseline slightly. No notable rules of this
type were generated from the 1 tweet per instance data set.

However, when examining the 100 tweets per instance data set for rules ignoring demographic
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(a) The most negative slope for You to U feature use
percentage over time at −104.35.
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(b) The most positive slope for You to U feature use
percentage over time at 50.14.

Figure 11: Plots of You to U feature use percentages over time. When plotting feature usage
percents versus their respective tweet timestamps, some change can be observed with respect to
time, especially in the You to U feature. The most negative and most positively sloped best fit lines
are shown here. Slopes are based on UTC timestamp versus percentage occurrence of a feature in
a tweet. The slopes are normalized with time span shown being normalized to span 0 to 1.

data, the results changed a bit. This data set showed confidence peaking at 22%. A collection of
rules, such as ”Users using the prefix abbreviation and not using the Th to D or Single Character

abbreviations are classified as age 23–25” are found at this confidence level. This classification is
present in 16% of instances, showing there is an observable association between age and abbrevi-
ation patterns, as found in previous experiments. For comparison, the boolean feature experiments
on the same data set achieved almost 7% accuracy improvement over baseline, while this set of
rules achieved 6%. Several other collections of abbreviation feature-based rules appear with lower
confidence levels. These rules still outperform random chance selection, but not as well as the 22%
confidence group or many of the higher performing demographic data-based rules.

Astrology was included as a feature in all association experiments. Despite this, it was never
used in any rule. This suggests its use as a control variable is warranted, since it has no observed
relationship to other features.
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7.4 Longitudinal Analysis

Few users in the collected data set provided tweets that covered a large time span. The top 10
longest tweeting users were selected from the data set for longitudinal analysis, to see if any change
in their usage of abbreviation types could be observed. The tweets analyzed covered from 4 to just
over 5 years per user. Tweets were plotted with UTC Unix epoch timestamp on the x axis and
abbreviation feature percentage on the y axis. The collection of points was analyzed with NumPy
to obtain a best fit line, which minimizes squared error [47]. The best fit line was plotted on top of
the data points for visualization.

Due to the large numbers that are used to represent UTC timestamps, as well as the inconsistent
time frame covered by each user’s tweets, the timestamps were normalized during analysis. Each
user’s tweet timestamps were normalized to span 0 to 1 for analysis purposes. In most cases, this
resulted in a slope calculated for each abbreviation feature type in the range -1 to 1. In some cases,
such as those displayed in Figure 11, the slope far exceeded those bounds.

The You to U abbreviation type feature had the most noticeable change over time compared to
other abbreviation types, as well as the most significant amount of change, as shown in Figure 11a
and Figure 11b with slopes of−104 and 50, respectively. 9 out of 10 users showed some change in
their use of the You to U abbreviation type. For the most part, the calculated slopes were negative,
suggesting that users tended to use less of the abbreviation as they got more familiar with Twitter.
The most negative slope of the ten selected users is shown in Figure 11a. 3 of the 10 users showed
a positive (even if slight) slope for the You to U feature. The most positive is shown in Figure 11b.
Other features showed slight change over time within the users, but the You to U feature showed
the most change.

In some cases, analysis indicated that a user began to use significantly less of one abbreviation
type and somewhat more of another. This would suggest that as users get more familiar with the
Twitter service, they adapt their writing patterns to fit the medium, tending to write more standard
English as time passes, but sometimes adopting a more comfortable abbreviation type, such as
contractions, in favor of another.

These changes might also parallel language change with respect to abbreviation usage in other
mediums, such as SMS. Many abbreviations were used in SMS texts, due to the restricted character
length, similar to Twitter. As smart-phones with full keyboards have become more popular and text
messaging has become cheaper, it is easier for SMS users to type full words and utilize multiple
sequential SMS messages for longer messages, which lessens the need for abbreviations. Should
such usage changes be a reality for SMS, it is likely that they will be reflected in other restricted-
length texts, such as on Twitter. Such parallels are additionally likely due to the prevalence of
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Figure 12: Best achieved accuracy for each feature type and classifier. Best results were chosen
independent of data set, though most were from the 10 bin data sets with either 100 or 75 tweets
per group. Displayed values are the percentage accuracy above each relative ZeroR baseline. The
Raw chart displays results from experiments on features without best first feature selection or PCA
feature extraction run on them, while the Best First and PCA charts show results of experiments run
on features after applying a best-first feature selection algorithm or principal component analysis
feature extraction, respectively.

creating Twitter messages from smart-phones using the same input systems as SMS.

8 Conclusions

The results of the classifier algorithm experiments (subsection 7.2) were a promising verification
of the hypothesis that word and phrase abbreviation types used on Twitter can aid in classifying
a Twitter user’s age. Classifications using word and phrase abbreviation patterns alone did not
perform as well as those using n-gram features, as could be expected. The information sparsity
of abbreviation features compared to the wealth of information contained in unigrams contributes
to the lower accuracy. Abbreviation classification did significantly outperform relative baselines,
however, and may be a useful in the future as an additional feature for those seeking to perform age
and other demographic classification on noisy texts, such as those found on Twitter. Classifications
using combinations of n-gram and abbreviation features performed quite well, and using feature
selection or PCA improved classification results further still. Some of the best performing classifier
and feature combinations are shown in Figure 12.

In addition, somewhat equivalent relationships between abbreviation features and age classi-
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fications were found using association mining, as described in subsection 7.3. When including
demographic data, many other relationships were observed that reflected the state of the collected
demographic data. However, much of the time, including abbreviation features in the demographic-
based rules had little or no effect on the confidence value of the rule. This would suggest that cer-
tain relationships between demographic data are much stronger than those between abbreviation
features and demographic data, which makes intuitive sense.

Lastly, as described in subsection 7.4, there is some observable evidence for longitudinal
change in abbreviation pattern use within the collected data set. A little change was observed
in use of most abbreviation types, while the most change was observed in the You to U abbrevi-
ation type. Users seem to write with fewer abbreviations as they become more comfortable with
the Twitter medium, or adopt their writing in other ways to fit its restrictions. These changes may
parallel language changes in other mediums as well, such as in SMS message writing.

9 Future Work

There are a few directions one could take to further develop on the work presented here. First,
further experimentation using word and phrase abbreviation features can be done. The abbreviation
features presented here may be indicative of different demographic data than has been shown (age,
in this work, and user time zone and Twitter client by Gouws et al. [17]). Additionally, the work
may be generalizable to more types of noisy texts, such as SMS messages, and perhaps non-length
restricted texts, such as in online forums.

Second, but perhaps most importantly, further development of the collected data set should be
pursued. The data set is somewhat small, but has already shown to be useful for age classification
problems. Getting a large number of users to participate in such a data collection may be a difficult
task, but doing so could pave the way for a larger variety of future research on Twitter texts.

Third, as it is a frequent topic of interest in data analysis, work could be done on clustering such
data sets. Relationships between the data and classifications do seem to exist, so it would make
sense if a clustering algorithm may be able to harness those relationships for interesting, effective
clustering.

Last, further longitudinal study should be pursued. Language use on Twitter is undoubtedly
evolving, reflecting the evolution of spoken and other textual language. The data collected and
analyzed here did not cover a large time span, but a few noticeable within-user changes in abbre-
viation feature use could be detected. With a larger data set that spans a longer amount of time,
perhaps more language use change could be observed. It would also be of interest to compare
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changes observed in writing on Twitter to changes in other restricted-length texts, such as SMS or
other chat type corpora.
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Appendices
Appendix A Demographic Tables

Month Count Percentage
January 2 3 %

February 5 7 %
March 5 7 %
April 6 8 %
May 7 10 %
June 7 10 %
July 5 7 %

August 4 6 %
September 11 15 %

October 6 8 %
November 2 3 %
December 5 7 %

Not Specified 7 10 %
N = 72

(a) Birth Months

Language Count Percentage
Arabic 1 1%
English 66 72%

Esperanto 1 1%
French 5 5%
German 2 2%
Italian 1 1%

Japanese 2 2%
Latin 2 2%

Lojban 2 2%
Mandarin 1 1%

Polish 1 1%
Russian 1 1%
Spanish 1 1%
Turkish 1 1%

Not Specified 5 5%
N = 92

(b) Languages Used Most on Twitter

Education Count Percentage
High School 5 7%

Currently In College 6 8%
Some College 10 14%

Bachelor’s Degree 28 39%
Associate’s Degree 1 1%

Master’s Degree 12 17%
Doctoral Degree 2 3%

Not Specified 8 11%
N = 72

(c) Highest Education

Gender Count Percentage
Female 37 51%
Male 29 40%

Not Specified 6 8%
N = 72

(d) Genders
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Astrology Count Percentage
Aquarius 2 3%

Pisces 5 7%
Aries 4 6%

Taurus 8 11%
Gemini 5 7%
Cancer 6 8%

Leo 3 4%
Virgo 9 13%
Libra 2 3%

Scorpio 4 6%
Sagittarius 2 3%
Capricorn 1 1%

Not Specified 21 29%
N = 72

(e) Astrological Signs

Region Count Percentage
Australia 4 4%
Canada 2 2%
France 1 1%

Germany 1 1%
Japan 1 1%

Poland 1 1%
Turkey 1 1%

United Kingdom 9 8%
United States 8 7%
Midwest US 16 14%
Northeast US 23 20%

South US 18 16%
West US 22 19%

Not Specified 6 5%
N = 113

(f) Geographical Regions of Residence
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